• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

高铁接触网铜镁合金材料的率温耦合变形机理与本构参数

王鸿立 曾泽林 苏兴亚 凌静 梅桂明 梁延祥 敬霖

王鸿立, 曾泽林, 苏兴亚, 凌静, 梅桂明, 梁延祥, 敬霖. 高铁接触网铜镁合金材料的率温耦合变形机理与本构参数[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0047
引用本文: 王鸿立, 曾泽林, 苏兴亚, 凌静, 梅桂明, 梁延祥, 敬霖. 高铁接触网铜镁合金材料的率温耦合变形机理与本构参数[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0047
WANG Hongli, ZENG Zelin, SU Xingya, LING Jing, MEI Guiming, LIANG Yanxiang, JING Lin. Rate-temperature coupled deformation mechanism and constitutive parameters of catenary copper-magnesium alloy materials for high-speed railway[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0047
Citation: WANG Hongli, ZENG Zelin, SU Xingya, LING Jing, MEI Guiming, LIANG Yanxiang, JING Lin. Rate-temperature coupled deformation mechanism and constitutive parameters of catenary copper-magnesium alloy materials for high-speed railway[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0047

高铁接触网铜镁合金材料的率温耦合变形机理与本构参数

doi: 10.11883/bzycj-2025-0047
基金项目: 国家自然科学基金(12122211)
详细信息
    作者简介:

    王鸿立(2000- ),男,硕士研究生,holyking0921@163.com

    通讯作者:

    敬 霖(1984- ),男,博士,研究员,博士生导师,jinglin@swjtu.edu.cn

  • 中图分类号: O347.3

Rate-temperature coupled deformation mechanism and constitutive parameters of catenary copper-magnesium alloy materials for high-speed railway

  • 摘要: 为研究高速铁路弓网系统在动态冲击和摩擦温升等服役条件下的力学性能,采用DF14.205D电子万能试验机和分离式霍普金森压杆,测试了应变率0.001~3000 s−1和温度293~873 K范围内高速铁路接触网铜镁合金材料的单轴压缩力学性能,分析了其应力-应变响应的应变率效应和温度敏感性,揭示了率温耦合作用下铜镁合金材料的压缩变形机制和微观组织演化规律,并构建了能准确描述其塑性流动行为的动态本构模型。研究表明,接触网铜镁合金材料在压缩过程中表现出显著的应变率强化和温度软化效应,并且这些效应受到加工硬化、应变率、温度软化等因素的共同作用;当温度大于473 K时,材料的变形主要以温度软化为主导,且温度能促进材料动态回复与动态再结晶过程;修正后的Johnson-Cook模型能够较好地预测该材料的塑性流动应力-应变响应。研究结果可为高速列车弓网系统服役安全设计和评估提供参考。
  • 图  1  接触网铜镁合金材料压缩试件取样示意图

    Figure  1.  Schematic diagram of the compression specimen sampling for catenary copper-magnesium alloy

    图  2  接触网铜镁合金材料的原始微观组织

    Figure  2.  The Original microstructure of the catenary copper-magnesium alloy

    图  3  接触网铜镁合金材料的真实应力-真实应变响应

    Figure  3.  True stress-true strain response of catenary copper-magnesium alloy

    图  4  接触网铜镁合金材料的屈服强度σ0.2和流动应力σ (εture=0.06)

    Figure  4.  Yield strength σ0.2 and flow stress σ (εture=0.06) of catenary copper-magnesium alloy

    图  5  不同温度和应变率下铜镁合金材料的应变率敏感指数ms和温度敏感性因子ST

    Figure  5.  Strain rate sensitivity coefficient ms and temperature sensitivity factor ST of copper-magnesium alloy materials at different temperatures and strain rates

    图  6  同一温度、不同应变率下压缩实验后的接触网铜镁合金材料的微观组织结构与晶粒尺寸分布图

    Figure  6.  Microstructural features and grain size distribution map of catenary copper-magnesium alloy after compression tests at the same temperature and different strain rates

    图  7  同一应变率、不同温度下压缩实验后的接触网铜镁合金材料的微观组织结构与晶粒尺寸分布图

    Figure  7.  Microstructural features and grain size distribution map of catenary copper-magnesium alloy after compression tests at the same strain rate and different temperatures

    图  8  同一温度、不同应变率下压缩实验后的接触网铜镁合金材料KAM分布图

    Figure  8.  KAM diagram of catenary copper-magnesium alloy after compression testing

    图  9  同一应变率、不同温度下压缩实验后的接触网铜镁合金材料KAM分布图

    Figure  9.  KAM diagram of catenary copper-magnesium alloy after compression testing

    图  10  不同温度和应变率下的平均几何位错密度

    Figure  10.  Average geometrical dislocation density at different temperatures and strain rates

    图  11  不同温度和应变率下接触网铜镁合金材料实验结果和模型预测结果对比

    Figure  11.  Comparison of experimental results and model predictions for catenary copper-magnesium alloy at different temperatures and strain rates

    图  12  不同温度和应变率下修正J-C模型预测结果的εAARE

    Figure  12.  The εAARE of the modified J-C model at different temperatures and strain rates

  • [1] WU G N, DONG K L, XU Z L, et al. Pantograph-catenary electrical contact system of high-speed railways: recent progress, challenges, and outlooks [J]. Railway Engineering Science, 2022, 30(4): 437–467. DOI: 10.1007/s40534-022-00281-2.
    [2] MEI G M. Tribological performance of rigid overhead lines against pantograph sliders under DC passage [J]. Tribology International, 2020, 151: 106538. DOI: 10.1016/j.triboint.2020.106538.
    [3] SONG Y, LIU Z G, DUAN F C, et al. Wave propagation analysis in high-speed railway catenary system subjected to a moving pantograph [J]. Applied Mathematical Modelling, 2018, 59: 20–38. DOI: 10.1016/j.apm.2018.01.001.
    [4] SONG Y, LIU Z G, RØNNQUIST A, et al. Contact wire irregularity stochastics and effect on high-speed railway pantograph-catenary interactions [J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(10): 8196–8206. DOI: 10.1109/TIM.2020.2987457.
    [5] SONG Y, ANTUNES P, POMBO J, et al. A methodology to study high-speed pantograph-catenary interaction with realistic contact wire irregularities [J]. Mechanism and Machine Theory, 2020, 152: 103940. DOI: 10.1016/j.mechmachtheory.2020.103940.
    [6] 雷静果, 刘平, 井晓天, 等. 高速铁路接触线用时效强化铜合金的发展 [J]. 金属热处理, 2005, 30(3): 1–5. DOI: 10.13251/j.issn.0254-6051.2005.03.001.

    LEI J G, LIU P, JING X T, et al. Development of aging-strengthening copper alloy used in contact wire of high-speed railway [J]. Heat Treatment of Metals, 2005, 30(3): 1–5. DOI: 10.13251/j.issn.0254-6051.2005.03.001.
    [7] WEI X K, MENG H F, HE J H, et al. Wear analysis and prediction of rigid catenary contact wire and pantograph strip for railway system [J]. Wear, 2020, 442/443: 203118. DOI: 10.1016/j.wear.2019.203118.
    [8] DING T, CHEN G X, BU J, et al. Effect of temperature and arc discharge on friction and wear behaviours of carbon strip/copper contact wire in pantograph–catenary systems [J]. Wear, 2011, 271(9/10): 1629–1636. DOI: 10.1016/j.wear.2010.12.031.
    [9] YANG H J, CHEN G X, GAO G Q, et al. Experimental research on the friction and wear properties of a contact strip of a pantograph-catenary system at the sliding speed of 350 km/h with electric current [J]. Wear, 2015, 332/333: 949–955. DOI: 10.1016/j.wear.2014.11.004.
    [10] XU Z, SONG Y, LIU Z G. Stress analysis and fatigue life prediction of contact wire located at steady arms in high-speed railway catenary system [J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 9001212. DOI: 10.1109/TIM.2022.3144747.
    [11] 吴朋越, 谢水生, 黄国杰. 高速列车用铜合金接触线用材料及其加工工艺 [J]. 稀有金属, 2006, 30(2): 203–208. DOI: 10.13373/j.cnki.cjrm.2006.02.018.

    WU P Y, XIE S S, HUANG G J. Materials and process technics of copper contact wires for high-speed train [J]. Chinese Journal of Rare Metals, 2006, 30(2): 203–208. DOI: 10.13373/j.cnki.cjrm.2006.02.018.
    [12] 敬霖, 冯超, 苏兴亚, 等. 高速动车组D2车轮钢的率温耦合变形机理与本构关系 [J]. 科学通报, 2022, 67(34): 4068–4079. DOI: 10.1360/TB-2022-0437.

    JING L, FENG C, SU X Y, et al. Strain rate-temperature coupling deformation mechanism and constitutive relationship of D2 wheel steel for high-speed EMUs [J]. Chinese Science Bulletin, 2022, 67(34): 4068–4079. DOI: 10.1360/TB-2022-0437.
    [13] ZHANG T, LU S H, WU Y X, et al. Optimization of deformation parameters of dynamic recrystallization for 7055 aluminum alloy by cellular automaton [J]. Transactions of Nonferrous Metals Society of China, 2017, 27(6): 1327–1337. DOI: 10.1016/S1003-6326(17)60154-7.
    [14] PECZAK P, LUTON M J. A Monte Carlo study of the influence of dynamic recovery on dynamic recrystallization [J]. Acta Metallurgica et Materialia, 1993, 41(1): 59–71. DOI: 10.1016/0956-7151(93)90339-T.
    [15] DING R, GUO Z X. Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization [J]. Acta Metallurgica et Materialia, 2001, 49(16): 3163–3175. DOI: 10.1016/S1359-6454(01)00233-6.
    [16] WEN D X, LIN Y C, LI H B, et al. Hot deformation behavior and processing map of a typical Ni-based superalloy [J]. Materials Science and Engineering: A, 2014, 591: 183–192. DOI: 10.1016/j.msea.2013.09.049.
    [17] LIN Y C, CHEN X M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working [J]. Materials & Design, 2011, 32(4): 1733–1759. DOI: 10.1016/j.matdes.2010.11.048.
    [18] LIU Y H, NING Y Q, YANG X M, et al. Effect of temperature and strain rate on the workability of FGH4096 superalloy in hot deformation [J]. Materials & Design, 2016, 95: 669–676. DOI: 10.1016/j.matdes.2016.01.032.
    [19] LI J, WENG G J. A micromechanical approach to the stress-strain relations, strain-rate sensitivity and activation volume of nanocrystalline materials [J]. International Journal of Mechanics and Materials in Design, 2013, 9(2): 141–152. DOI: 10.1007/s10999-013-9214-1.
    [20] 袁康博, 姚小虎, 王瑞丰, 等. 金属材料的率-温耦合响应与动态本构关系综述 [J]. 爆炸与冲击, 2022, 42(9): 091401. DOI: 10.11883/bzycj-2021-0416.

    YUAN K B, YAO X H, WANG R F, et al. A review on rate-temperature coupling response and dynamic constitutive relation of metallic materials [J]. Explosion and Shock Waves, 2022, 42(9): 091401. DOI: 10.11883/bzycj-2021-0416.
    [21] LIU Y, ZHANG S, FENG C, et al. Dynamic mechanical behaviors of pearlitic U71MnG rail steel: deformation mechanisms and constitutive model [J]. Materials Science and Engineering: A, 2024, 897: 146353. DOI: 10.1016/j.msea.2024.146353.
    [22] 申坤, 汪明朴, 郭明星, 等. Cu-0.23%Al2O3弥散强化铜合金的高温变形特性研究 [J]. 金属学报, 2009, 45(5): 597–604. DOI: 10.3321/j.issn:0412-1961.2009.05.014.

    SHEN K, WANG M P, GUO M X, et al. Study on high temperature deformation characteristics of Cu-0.23%Al2O3 dispersion-strengthened copper alloy [J]. Acta Metallurgica Sinica, 2009, 45(5): 597–604. DOI: 10.3321/j.issn:0412-1961.2009.05.014.
    [23] SABIROV I, BARNETT M R, ESTRIN Y, et al. The effect of strain rate on the deformation mechanisms and the strain rate sensitivity of an ultra-fine-grained Al alloy [J]. Scripta Materialia, 2009, 61(2): 181–184. DOI: 10.1016/j.scriptamat.2009.03.032.
    [24] JING L, SU X Y, ZHAO L M. The dynamic compressive behavior and constitutive modeling of D1 railway wheel steel over a wide range of strain rates and temperatures [J]. Results in Physics, 2017, 7: 1452–1461. DOI: 10.1016/j.rinp.2017.04.015.
    [25] LONG M J, JIANG F, SU Y M, et al. Dynamic recrystallization mechanisms and microstructure evolution of a novel Al-Zn-Mg-Cu-Zr alloy by isothermal compression [J]. Journal of Materials Research and Technology, 2024, 33: 1740–1755. DOI: 10.1016/j.jmrt.2024.09.200.
    [26] LIU Y, LIU X B, FENG C, et al. Mechanical properties and microstructure of the heterogeneous DZ2 axle steel under high-strain-rate compression at ambient temperature [J]. Journal of Materials Research and Technology, 2023, 26: 8456–8471. DOI: 10.1016/j.jmrt.2023.09.192.
    [27] KUBIN L P, MORTENSEN A. Geometrically necessary dislocations and strain-gradient plasticity: a few critical issues [J]. Scripta Materialia, 2003, 48(2): 119–125. DOI: 10.1016/S1359-6462(02)00335-4.
    [28] 李定远, 朱志武, 卢也森. 冲击加载下42CrMo钢的动态力学性能及其本构关系 [J]. 高压物理学报, 2017, 31(6): 761–768. DOI: 10.11858/gywlxb.2017.06.011.

    LI D Y, ZHU Z W, LU Y S. Mechanical properties and constitutive relation for 42CrMo steel under impact load [J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 761–768. DOI: 10.11858/gywlxb.2017.06.011.
    [29] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]// Proceedings of the 7th International Symposium on Ballistics. The Hague, The Netherlands, 1983: 541–548.
    [30] 周伦, 苏兴亚, 敬霖, 等. 6061-T6铝合金动态拉伸本构关系及失效行为 [J]. 爆炸与冲击, 2022, 42(9): 111–122. DOI: 10.11883/bzycj-2022-0154.

    ZHOU L, SU X Y, JING L, et al. Dynamic tensile constitutive relationship and failure behavior of 6061-T6 aluminum alloy [J]. Explosion and Shock Waves, 2022, 42(9): 111–122. DOI: 10.11883/bzycj-2022-0154.
    [31] 刘晓燕, 李帅康, 杨西荣. 基于修正J-C和BP神经网络模型的超细晶纯钛动态本构行为 [J]. 稀有金属材料与工程, 2024, 53(2): 409–416. DOI: 10.12442/j.issn.1002-185X.20230015.

    LIU X Y, LI S K, YANG X R. Dynamic constitutive behavior of ultrafine-grained pure titanium based on modified J-C and BP artificial neural network model [J]. Rare Metal Materials and Engineering, 2024, 53(2): 409–416. DOI: 10.12442/j.issn.1002-185X.20230015.
  • 加载中
图(12)
计量
  • 文章访问数:  106
  • HTML全文浏览量:  13
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-18
  • 修回日期:  2025-04-16
  • 网络出版日期:  2025-04-18

目录

    /

    返回文章
    返回