• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

基于GNN/KAN的高应变速率金属材料本构关系的表征方法

袁基宸 黄夏旭 解国良

袁基宸, 黄夏旭, 解国良. 基于GNN/KAN的高应变速率金属材料本构关系的表征方法[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0103
引用本文: 袁基宸, 黄夏旭, 解国良. 基于GNN/KAN的高应变速率金属材料本构关系的表征方法[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0103
YUAN Jichen, HUANG Xiaxu, XIE Guoliang. Characterization method of material constitutive relationship at high strain rates based on GNN/KAN[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0103
Citation: YUAN Jichen, HUANG Xiaxu, XIE Guoliang. Characterization method of material constitutive relationship at high strain rates based on GNN/KAN[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0103

基于GNN/KAN的高应变速率金属材料本构关系的表征方法

doi: 10.11883/bzycj-2025-0103
基金项目: 国家重点研发计划(2021YFB3700700)
详细信息
    作者简介:

    袁基宸(2002- ),男,硕士,M202320731@xs.ustb.edu.cn

    通讯作者:

    黄夏旭(1985- ),男,博士,副教授,huangxx@ustb.edu.cn

  • 中图分类号: O347.3

Characterization method of material constitutive relationship at high strain rates based on GNN/KAN

  • 摘要: 为准确表征金属材料在高应变速率下的应力-应变本构关系,提出了基于图神经网络(graph neural networks,GNN)和KAN(Kolmogorov-Arnold networks)的本构关系的高精度预测模型。为解决传统Johnson-Cook(JC)模型不考虑温度、应变速率与应变之间的耦合效应问题,在GNN模型中构建图结构数据以描述多维参数的非线性关联,在KAN模型中基于Kolmogorov-Arnold定理实现高维输入空间的非线性映射。基于ODS(oxide dispersion strengthened)铜合金的高应变率压缩实验,评估了GNN、KAN和JC的本构关系描述和预测精度。结果表明:GNN与KAN模型在测试集中的平均相对误差分别为8.0%与9.0%,决定系数均高于0.95,显著优于JC模型(平均相对误差为38.0%,决定系数为0.75);将所构建的本构关系模型应用在有限元仿真中,GNN和KAN模型预测的等效塑性应变与应力分布更符合理论特征,而JC模型无法准确描述材料的软化阶段,仿真结果偏差较大。所构建的模型能有效捕捉高应变速率下材料的多场耦合特性,为极端载荷条件下的应力-应变本构关系提供了新的预测方法。
  • 图  1  研究思路

    Figure  1.  Research methodology

    图  2  ODS-铜合金的动态力学性能原始数据

    Figure  2.  Raw data of dynamic mechanical properties of ODS-copper alloys

    图  3  GNN模型结构图

    Figure  3.  Structure of the GNN model

    图  4  KAN模型结构图

    Figure  4.  Structural diagram of the KAN model

    图  5  超参数对σRMSE的影响

    Figure  5.  Effect of hyperparameters on σRMSE

    图  6  GNN、KAN模型与JC模型的预测精度对比

    Figure  6.  Comparison of the prediction accuracy of GNN and KAN models with JC models

    图  7  不同工况下JC模型、GNN模型、KAN模型的预测值与真实值对比

    Figure  7.  Comparison of the predicted values of the JC model, GNN model, and KAN model under different working conditions

    图  8  试样墩粗变形结果与仿真变形结果

    Figure  8.  The rough deformation results of the specimen pier and the simulation deformation results

    图  9  仿真应变云图

    Figure  9.  Comparison of the strain diagrams of the three models

    图  10  仿真应力云图

    Figure  10.  Comparison of stress diagrams of the three models

    表  1  模型预测结果的精度对比

    Table  1.   Comparison of the prediction accuracy of different models

    工况σMRER2
    GNN/%KAN/%JC/%GNNKANJC
    20 ℃/4 000 s−16.54.036.00.99270.99720.9073
    20 ℃/4 500 s−11.58.324.20.99930.97850.8978
    400 ℃/6 500 s−13.04.838.10.99700.99290.7975
    400 ℃/7 000 s−19.09.242.70.98960.99800.8590
    下载: 导出CSV
  • [1] ZERILLI F J, ARMSTRONG R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations [J]. Journal of Applied Physics, 1987, 61(5): 1816–1825. DOI: 10.1063/1.338024.
    [2] PERZYNA P. Fundamental problems in viscoplasticity [J]. Advances in Applied Mechanics, 1966, 9: 243–377. DOI: 10.1016/S0065-2156(08)70009-7.
    [3] Johnson G R. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the 7th International Symposium on Ballistics, The Hague, Netherlands, 1983.
    [4] LIU F X, WANG S J, XIE G L, et al. Microstructural evolution and modified constitutive model of nanoscale Al2O3 dispersion-strengthened copper under high strain rate deformation [J]. Materials Science and Engineering: A, 2024, 913: 146997. DOI: 10.1016/j.msea.2024.146997.
    [5] BREIMAN L. Random forests [J]. Machine Learning, 2001, 45(1): 5–32. DOI: 10.1023/A:1010933404324.
    [6] MITCHELL M. An introduction to genetic algorithms [M]. Cambridge: The MIT Press, 1998. DOI: 10.7551/mitpress/3927.001.0001.
    [7] CORTES C, VAPNIK V. Support-vector networks [J]. Machine Learning, 1995, 20(3): 273–297. DOI: 10.1007/bf00994018.
    [8] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors [J]. Nature, 1986, 323(6088): 533–536. DOI: 10.1038/323533a0.
    [9] LECUN Y, BOSER B, DENKER J S, et al. Backpropagation applied to handwritten zip code recognition [J]. Neural Computation, 1989, 1(4): 541–551. DOI: 10.1162/neco.1989.1.4.541.
    [10] 初红艳, 赵凯林, 程强. 盘形锻件等效应力分析及神经网络预测 [J]. 北京工业大学学报, 2021, 47(2): 103–111. DOI: 10.11936/bjutxb2019080014.

    CHU H Y, ZHAO K L, CHENG Q. Equivalent stress analysis and neural network prediction of disk forgings [J]. Journal of Beijing University of Technology, 2021, 47(2): 103–111. DOI: 10.11936/bjutxb2019080014.
    [11] 林启权, 卜根, 王镇柱, 等. 基于BP神经网络的DP980钢板本构关系 [J]. 塑性工程学报, 2022, 29(8): 139–144. DOI: 10.3969/j.issn.1007-2012.2022.08.017.

    LIN Q Q, BU G, WANG Z, et al. Constitutive relationship of DP980 steel sheet based on BP neural network [J]. Journal of Plasticity Engineering, 2022, 29(8): 139–144. DOI: 10.3969/j.issn.1007-2012.2022.08.017.
    [12] 魏令港, 黄靓, 曾令宏. 基于改进特征筛选的随机森林算法对锂渣混凝土强度的预测研究 [J]. 材料导报, 2024, 38(9): 22050319. DOI: 10.11896/cldb.22050319.

    WEI L G, HUANG L, ZENG L H. Using random forest with improved variable selection to predict the compressive strength of concrete with lithium slag [J]. Materials Reports, 2024, 38(9): 22050319. DOI: 10.11896/cldb.22050319.
    [13] 王彦磊, 王仁超, 龙益彬, 等. 基于改进随机森林算法的渡槽位移及应力预测模型 [J]. 水电能源科学, 2020, 38(5): 122–124,10. DOI: 10.20040/j.cnki.1000-7709.2020.05.030.

    WANG Y L, WANG R C, LONG Y B, et al. Aqueduct displacement and stress prediction model based on improved random forest algorithm [J]. Water Resources and Power, 2020, 38(5): 122–124,10. DOI: 10.20040/j.cnki.1000-7709.2020.05.030.
    [14] 丁军, 古愉川, 黄霞, 等. 基于改进遗传算法优化人工神经网络的304不锈钢流变应力预测准确性研究 [J]. 机械工程学报, 2022, 58(10): 78–86. DOI: 10.3901/JME.2022.10.078.

    DING J, GU Y C, HUANG X, et al. Research on prediction accuracy of flow stress of 304 stainless steel based on artificial neural network optimized by improved genetic algorithm [J]. Journal of Mechanical Engineering, 2022, 58(10): 78–86. DOI: 10.3901/JME.2022.10.078.
    [15] 黄俊杰, 朱剑琴, 程泽源. 基于卷积神经网络双层壁三维热应力预测方法 [J]. 航空动力学报, 2023, 38(7): 1658–1667. DOI: 10.13224/j.cnki.jasp.20220754.

    HUANG J J, ZHU J Q, CHENG Z Y. Three-dimensional thermal stress prediction method in double-wall structure using convolutional neural networks [J]. Journal of Aerospace Power, 2023, 38(7): 1658–1667. DOI: 10.13224/j.cnki.jasp.20220754.
    [16] SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model [J]. IEEE Transactions on Neural Networks, 2009, 20(1): 61–80. DOI: 10.1109/TNN.2008.2005605.
    [17] 董志浩. 基于图神经网络的材料性质预测及其应用研究 [D]. 苏州: 苏州大学, 2023. DOI: 10.27351/d.cnki.gszhu.2023.000186.

    DONG Z H. Research and applications of material property prediction based on graph neural networks [D]. Suzhou: Soochow University, 2023. DOI: 10.27351/d.cnki.gszhu.2023.000186.
    [18] MAURIZI M, GAO C, BERTO F. Predicting stress, strain and deformation fields in materials and structures with graph neural networks [J]. Scientific Reports, 2022, 12(1): 21834. DOI: 10.1038/s41598-022-26424-3.
    [19] 郑哲, 江文强, 王璋奇, 等. 基于图神经网络的结构力学响应预测模型研究 [J/OL]. 工程力学, 1–11. [2024-12-09]. https://engineeringmechanics.cn/cn/article/doi/ 10.6052/j.issn.1000-4750.2023.10.0801. DOI: 10.6052/j.issn.1000-4750.2023.10.0801.

    ZHENG Z, JIANG W Q, WANG Z Q, et al. Research on the prediction model of mechanical response for structures based on graph neural network [J/OL]. Engineering Mechanics, 1–11[2024-12-09]. https://engineeringmechanics.cn/cn/article/doi/ 10.6052/j.issn.1000-4750.2023.10.0801. DOI: 10.6052/j.issn.1000-4750.2023.10.0801.
    [20] LIU Z M, WANG Y X, VAIDYA S, et al. KAN: Kolmogorov-Arnold networks [C]//Proceedings of the 13th International Conference on Learning Representations. Singapore: ICLR, 2025: 1–47.
    [21] 夏天, 高志玉, 赵斐, 等. 金属材料塑性本构模型建立研究进展 [J]. 塑性工程学报, 2024, 31(9): 23–35. DOI: 10.3969/j.issn.1007-2012.2024.09.002.

    XIA T, GAO Z Y, ZHAO F, et al. Research progress on establishing of plastic constitutive models for metal materials [J]. Journal of Plasticity Engineering, 2024, 31(9): 23–35. DOI: 10.3969/j.issn.1007-2012.2024.09.002.
    [22] GILMER J, SCHOENHOLZ S S, RILEY P F, et al. Neural message passing for quantum chemistry [C]//Proceedings of the 34th International Conference on Machine Learning. Sydney: PMLR, 2017: 1263–1272.
    [23] 王平. 金属塑性成型力学 [M]. 第2版. 北京: 冶金工业出版社, 2013.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  395
  • HTML全文浏览量:  67
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-02
  • 修回日期:  2025-07-01
  • 网络出版日期:  2025-07-01

目录

    /

    返回文章
    返回