Global Sensitivity Analysis and Parameter Inversion of the Rock RHT Constitutive Model Using the PAWN Method and Intelligent Optimization Algorithms
-
摘要: Riedel-Hiermaier-Thoma(RHT)本构模型广泛应用于隧道爆破与抗冲击结构设计中,然而部分参数因试验成本高而难以标定,通常依赖于试错法调参,进而降低建模效率与仿真精度。针对该模型中16个难以标定的参数,本文基于PAWN全局敏感性分析与智能优化算法,联合Matlab与ANSYS/LS-DYNA仿真计算平台,引入应力–应变曲线面积差(AD)作为核心评价指标,构建了一套高效、可靠的RHT本构参数反演体系,实现了RHT模型关键参数的全局敏感性分析与自动化反演。结果表明,在16个难以标定参数中,仅有8个参数对模型响应具有显著影响;基于智能优化算法的参数反演相对误差控制在0.23%–9.28%之间,并通过半圆盘三弯点试验(Semicircular Bend Split Hopkinson Pressure Bar (SCB-SHPB) Test)与缩尺爆破试验检验其可靠性。该方法显著提升了参数识别的准确性与效率,具有良好的工程适用性。
-
关键词:
Abstract: Riedel--Hiermaier--Thoma (RHT) constitutive model is extensively employed in tunnel blasting and impact-resistant structural design. However, experimental calibration of specific parameters is impeded by prohibitive costs, often necessitating trial-and-error adjustments that undermine modeling efficiency and simulation accuracy. To overcome this limitation, an efficient and robust inverse identification framework is developed for 16 difficult-to-calibrate RHT parameters by integrating PAWN global sensitivity analysis with intelligent optimization algorithms. Leveraging a MATLAB--ANSYS/LS-DYNA co-simulation platform, the area difference AD of stress--strain curves is introduced as the core evaluation metric. Results reveal that only 8 of the 16 parameters significantly affect the model response. The proposed methodology achieves relative inversion errors ranging from 0.23% to 9.28%, with its reliability rigorously validated through semicircular bend Split Hopkinson Pressure Bar (SCB-SHPB) tests and scaled blasting experiments. This approach markedly improves both the accuracy and efficiency of parameter identification, demonstrating strong engineering applicability. -
计量
- 文章访问数: 98
- HTML全文浏览量: 17
- PDF下载量: 31
- 被引次数: 0


下载: