• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

数据驱动点阵超材料多目标优化设计

肖李军 朱艳林 石高泉 李依男 李润枝 惠旭龙 张瑞刚 宋卫东

肖李军, 朱艳林, 石高泉, 李依男, 李润枝, 惠旭龙, 张瑞刚, 宋卫东. 数据驱动点阵超材料多目标优化设计[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0288
引用本文: 肖李军, 朱艳林, 石高泉, 李依男, 李润枝, 惠旭龙, 张瑞刚, 宋卫东. 数据驱动点阵超材料多目标优化设计[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0288
XIAO Lijun, ZHU Yanlin, SHI Gaoquan, LI Yinan, LI Runzhi, HUI Xulong, ZHANG Ruigang, SONG Weidong. Data-driven multi-objective optimization for lattice-based metamaterials[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0288
Citation: XIAO Lijun, ZHU Yanlin, SHI Gaoquan, LI Yinan, LI Runzhi, HUI Xulong, ZHANG Ruigang, SONG Weidong. Data-driven multi-objective optimization for lattice-based metamaterials[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0288

数据驱动点阵超材料多目标优化设计

doi: 10.11883/bzycj-2025-0288
基金项目: 国家自然科学基金(12372349, 12172056, 12572429, 12002049);爆炸科学与安全防护全国重点实验室自主课题(YBKT25–05);强度与结构完整性全国重点实验室开放基金(LSSIKFJJ202404009)
详细信息
    作者简介:

    肖李军(1991- ),男,博士,副教授,xljbit@bit.edu.cn

    通讯作者:

    宋卫东(1975- ),男,博士,教授,swdgh@bit.edu.cn

  • 中图分类号: O347.3; TQ028.1

Data-driven multi-objective optimization for lattice-based metamaterials

  • 摘要: 桁架类点阵超材料是一类超轻质承载吸能材料,在冲击防护领域具有广阔的应用前景。然而,由于点阵超材料细观构型参数空间庞大,且构型参数与力学响应之间存在复杂的非线性关系,其性能优化面临巨大挑战。针对上述问题,基于桁架类点阵超材料的细观结构特征,提出了一种高效的快速数字化建模方法,并利用 Python 脚本驱动 Abaqus 仿真软件,实现了材料的批量化建模与仿真分析。在此基础上,通过有限元数值模拟建立了不同构型点阵超材料的准静态压缩性能数据集,并利用实验验证了数据集的可靠性。随后,训练了一个人工神经网络(artificial neural network,ANN)模型作为代理函数,并将其嵌入非支配排序遗传算法(non-dominated sorting genetic algorithm II,NSGA-II),对点阵超材料开展多目标优化设计,获得了具有高承载能力、高吸能特性以及兼顾承载吸能性能的点阵超材料构型。研究结果表明,融合机器学习技术与有限元仿真,可有效降低优化设计的计算成本,为复杂点阵超材料的快速性能优化与定制化设计提供技术支撑。
  • 图  1  点阵超材料建模过程

    Figure  1.  Modeling process of lattice metamaterial

    图  2  Tough2000的拉伸应力-应变曲线

    Figure  2.  Tensile stress-strain curves of Tough2000

    图  3  点阵超材料有限元模型

    Figure  3.  Finite element model of lattice metamaterial

    图  4  实验所得曲线和模拟所得曲线的对比

    Figure  4.  Comparison between the experimental curves and the simulated curves

    图  5  实验变形模式和数值模拟变形模式的对比

    Figure  5.  Comparison between the experimental deformation mode and the numerical simulation deformation mode

    图  6  人工神经网络

    Figure  6.  Artificial neural networks

    图  7  ANN训练过程中损失函数的变化趋势

    Figure  7.  Loss function trend during ANN training

    图  8  ANN预测值与真实值之间的线性关系

    Figure  8.  Linear relationship between ANN predicted values and true values

    图  9  Pareto前沿示意图

    Figure  9.  Schematic diagram of Pareto front

    图  10  NSGA-Ⅱ多目标优化流程图

    Figure  10.  NSGA-Ⅱ multi-objective optimization flowchart

    图  11  承载型点阵超材料优化设计的Pareto前沿

    Figure  11.  Pareto front for optimization design of load-bearing lattice-based metamaterials

    图  12  承载型点阵超材料的优化胞元构型

    Figure  12.  Optimized unit cell configurations of load-bearing lattice-based metamaterials

    图  13  承载型点阵超材料优化设计的模拟验证结果

    Figure  13.  Simulation verification results for optimization design of load-bearing lattice-based metamaterials

    图  14  吸能型点阵超材料优化设计的Pareto前沿

    Figure  14.  Pareto front for optimization design of energy-absorbing lattice-based metamaterials

    图  15  吸能型点阵超材料的优化胞元构型

    Figure  15.  Optimized unit cell configurations of energy-absorbing lattice-based metamaterials

    图  16  吸能型点阵超材料优化设计的仿真验证结果

    Figure  16.  Simulation verification results for optimization design of energy-absorbing lattice-based metamaterials

    图  17  兼顾承载吸能点阵超材料优化设计的Pareto前沿

    Figure  17.  Pareto front for optimization design of lattice-based metamaterials with both high energy absorption and load bearing capacity

    图  18  兼顾承载吸能点阵超材料的优化胞元构型

    Figure  18.  Optimized unit cell configurations of lattice-based metamaterials with both high energy absorption and load bearing capacity

    图  19  兼顾承载吸能点阵超材料优化设计的仿真验证结果

    Figure  19.  Simulation verification results for optimization design of lattice-based metamaterials with both high energy absorption and load-bearing capacities

    图  20  Lattice-(e)的实验与模拟力学响应对比

    Figure  20.  Comparison between experimental and simulated mechanical responses of Lattice-(e)

    表  1  结构(e)的实验和模拟结果对比

    Table  1.   Comparison of experimental and simulation results of Lattice-(e)

    方法弹性模量/MPa吸能密度/MPa
    仿真42.22441.1029
    实验43.43961.2082
    相对误差/%2.88.7
    下载: 导出CSV
  • [1] CHOUGRANI L, PERNOT J P, VÉRON P, et al. Lattice structure lightweight triangulation for additive manufacturing [J]. Computer-Aided Design, 2017, 90: 95–104. DOI: 10.1016/j.cad.2017.05.016.
    [2] YIN S, GUO W H, WANG H T, et al. Strong and tough bioinspired additive-manufactured dual-phase mechanical metamaterial composites [J]. Journal of the Mechanics and Physics of Solids, 2021, 149: 104341. DOI: 10.1016/j.jmps.2021.104341.
    [3] PORTELA C M, GREER J R, KOCHMANN D M. Impact of node geometry on the effective stiffness of non-slender three-dimensional truss lattice architectures [J]. Extreme Mechanics Letters, 2018, 22: 138–148. DOI: 10.1016/j.eml.2018.06.004.
    [4] LING C, CERNICCHI A, GILCHRIST M D, et al. Mechanical behaviour of additively-manufactured polymeric octet-truss lattice structures under quasi-static and dynamic compressive loading [J]. Materials & Design, 2019, 162: 106–118. DOI: 10.1016/j.matdes.2018.11.035.
    [5] YIN H F, ZHANG W Z, ZHU L C, et al. Review on lattice structures for energy absorption properties [J]. Composite Structures, 2023, 304(Pt 1): 116397. DOI: 10.1016/j.compstruct.2022.116397.
    [6] NAZIR A, ABATE K M, KUMAR A, et al. A state-of-the-art review on types, design, optimization, and additive manufacturing of cellular structures [J]. The International Journal of Advanced Manufacturing Technology, 2019, 104(9-12): 3489–3510. DOI: 10.1007/s00170-019-04085-3.
    [7] HU L L, ZHOU M Z, DENG H. Dynamic crushing response of auxetic honeycombs under large deformation: theoretical analysis and numerical simulation [J]. Thin-Walled Structures, 2018, 131: 373–384. DOI: 10.1016/j.tws.2018.04.020.
    [8] ZHANG D H, FEI Q G, LIU J Z, et al. Crushing of vertex-based hierarchical honeycombs with triangular substructures [J]. Thin-Walled Structures, 2020, 146: 106436. DOI: 10.1016/j.tws.2019.106436.
    [9] NEČEMER B, GLODEŽ S, NOVAK N, et al. Numerical modelling of a chiral auxetic cellular structure under multiaxial loading conditions [J]. Theoretical and Applied Fracture Mechanics, 2020, 107: 102514. DOI: 10.1016/j.tafmec.2020.102514.
    [10] ANDREW J J, SCHNEIDER J, UBAID J, et al. Energy absorption characteristics of additively manufactured plate-lattices under low- velocity impact loading [J]. International Journal of Impact Engineering, 2021, 149: 103768. DOI: 10.1016/j.ijimpeng.2020.103768.
    [11] MIRALBES R, RANZ D, PASCUAL F J, et al. Characterization of additively manufactured triply periodic minimal surface structures under compressive loading [J]. Mechanics of Advanced Materials and Structures, 2022, 29(13): 1841–1855. DOI: 10.1080/15376494.2020.1842948.
    [12] MA Q P, YAN Z J, ZHANG L, et al. The family of elastically isotropic stretching-dominated cubic truss lattices [J]. International Journal of Solids and Structures, 2022, 239/240: 111451. DOI: 10.1016/j.ijsolstr.2022.111451.
    [13] MACONACHIE T, LEARY M, LOZANOVSKI B, et al. SLM lattice structures: properties, performance, applications and challenges [J]. Materials & Design, 2019, 183: 108137. DOI: 10.1016/j.matdes.2019.108137.
    [14] MORA S, PUGNO N M, MISSERONI D. 3D printed architected lattice structures by material jetting [J]. Materials Today, 2022, 59: 107–132. DOI: 10.1016/j.mattod.2022.05.008.
    [15] TANCOGNE-DEJEAN T, SPIERINGS A B, MOHR D. Additively-manufactured metallic micro-lattice materials for high specific energy absorption under static and dynamic loading [J]. Acta Materialia, 2016, 116: 14–28. DOI: 10.1016/j.actamat.2016.05.054.
    [16] EPASTO G, PALOMBA G, D'ANDREA D, et al. Ti-6Al-4V ELI microlattice structures manufactured by electron beam melting: effect of unit cell dimensions and morphology on mechanical behaviour [J]. Materials Science and Engineering: A, 2019, 753: 31–41. DOI: 10.1016/j.msea.2019.03.014.
    [17] WANG S H, MA Y B, DENG Z C, et al. Two elastically equivalent compound truss lattice materials with controllable anisotropic mechanical properties [J]. International Journal of Mechanical Sciences, 2022, 213: 106879. DOI: 10.1016/j.ijmecsci.2021.106879.
    [18] DONDA K, BRAHMKHATRI P, ZHU Y F, et al. Machine learning for inverse design of acoustic and elastic metamaterials [J]. Current Opinion in Solid State and Materials Science, 2025, 35: 101218. DOI: 10.1016/j.cossms.2025.101218.
    [19] XU W, LIU C, GUO Y L, et al. Problem-Independent Machine Learning (PIML) enhanced 3D lattice composite structures optimization via moving morphable components approach [J]. Composite Structures, 2025, 369: 119330. DOI: 10.1016/j.compstruct.2025.119330.
    [20] ZHAO S Y, ZHAO Z, YANG Z C, et al. Functionally graded graphene reinforced composite structures: a review [J]. Engineering Structures, 2020, 210: 110339. DOI: 10.1016/j.engstruct.2020.110339.
    [21] ZHANG X C, SONG Z Y, LI Y N, et al. Generative inverse design of metamaterials with customized stress-strain response [J]. International Journal of Mechanical Sciences, 2025, 306: 110875. DOI: 10.1016/j.ijmecsci.2025.110875.
    [22] SEPASDAR R, KARPATNE A, SHAKIBA M. A data-driven approach to full-field nonlinear stress distribution and failure pattern prediction in composites using deep learning [J]. Computer Methods in Applied Mechanics and Engineering, 2022, 397: 115126. DOI: 10.1016/j.cma.2022.115126.
    [23] PELOQUIN J, KIRILLOVA A, RUDIN C, et al. Prediction of tensile performance for 3D printed photopolymer gyroid lattices using structural porosity, base material properties, and machine learning [J]. Materials & Design, 2023, 232: 112126. DOI: 10.1016/j.matdes.2023.112126.
    [24] GLAESENER R N, KUMAR S, LESTRINGANT C, et al. Predicting the influence of geometric imperfections on the mechanical response of 2D and 3D periodic trusses [J]. Acta Materialia, 2023, 254: 118918. DOI: 10.1016/j.actamat.2023.118918.
    [25] YU G J, XIAO L J, SONG W D. Deep learning-based heterogeneous strategy for customizing responses of lattice structures [J]. International Journal of Mechanical Sciences, 2022, 229: 107531. DOI: 10.1016/j.ijmecsci.2022.107531.
    [26] SANTOSA S P, WIERZBICKI T, HANSSEN A G, et al. Experimental and numerical studies of foam-filled sections [J]. International Journal of Impact Engineering, 2000, 24(5): 509–534. DOI: 10.1016/S0734-743X(99)00036-6.
    [27] LE V T, DINH D M, TRAN V C, et al. Modelling, analysis, and multi-objective optimization of single weld bead characteristics in wire arc additive manufacturing of Inconel 625 based on machine learning and NSGA-II [J]. Materials Today Communications, 2025, 49: 113831. DOI: 10.1016/j.mtcomm.2025.113831.
  • 加载中
图(20) / 表(1)
计量
  • 文章访问数:  261
  • HTML全文浏览量:  34
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-01
  • 修回日期:  2025-11-24
  • 网络出版日期:  2025-12-02

目录

    /

    返回文章
    返回