• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

带截顶内衬的高熵合金/Al/PTFE双层复合药型罩成型机理与毁伤特性

郑贺龄 王展翾 王明扬 李先成 李欣田 李正坤 徐立志 杜忠华

郑贺龄, 王展翾, 王明扬, 李先成, 李欣田, 李正坤, 徐立志, 杜忠华. 带截顶内衬的高熵合金/Al/PTFE双层复合药型罩成型机理与毁伤特性[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0325
引用本文: 郑贺龄, 王展翾, 王明扬, 李先成, 李欣田, 李正坤, 徐立志, 杜忠华. 带截顶内衬的高熵合金/Al/PTFE双层复合药型罩成型机理与毁伤特性[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0325
ZHENG Heling, WANG Zhanxuan, WANG Mingyang, LI Xiancheng, LI Xintian, LI Zhengkun, XU Lizhi, DU Zhonghua. Formation mechanism and damage characteristics of a high-entropy alloy/al/ptfe double-layer composite liner with a truncated inner layer[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0325
Citation: ZHENG Heling, WANG Zhanxuan, WANG Mingyang, LI Xiancheng, LI Xintian, LI Zhengkun, XU Lizhi, DU Zhonghua. Formation mechanism and damage characteristics of a high-entropy alloy/al/ptfe double-layer composite liner with a truncated inner layer[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0325

带截顶内衬的高熵合金/Al/PTFE双层复合药型罩成型机理与毁伤特性

doi: 10.11883/bzycj-2025-0325
基金项目: 空基信息感知与融合全国重点实验室开放基金(ASFC-20240001059006);军事科学院目标易损性评估全国重点实验室开放基金(YSX2024KFYS003);江苏省自然科学基金(BK20220968);工程材料与结构冲击振动四川省重点实验室开放基金(22kfgk03);兴辽英才计划(XLYC2202021)
详细信息
    作者简介:

    郑贺龄(1997- ),男,博士研究生,zhl316580379@163.com

    通讯作者:

    徐立志(1990- ),男,博士研究生,教授,xulznjust@163.com

  • 中图分类号: O382; TJ410.3; E95

Formation mechanism and damage characteristics of a high-entropy alloy/al/ptfe double-layer composite liner with a truncated inner layer

  • 摘要: 针对传统金属射流在侵彻混凝土目标时存在毁伤面积有限、动态响应不足等问题,首次提出了一种新型高熵合金/铝/聚四氟乙烯(high-entropy alloys/aluminium/polytetrafluoroethylene,HEA/Al/PTFE)双层含能复合药型罩结构。采用真空电弧熔炼、粉末压制与烧结工艺,成功制备出带截顶内衬的半球形复合罩,并通过试验与数值模拟相结合的方法,系统研究了其成型机理、侵彻特性与毁伤效能。试验结果表明,相较于单层HEA罩,该复合结构能显著增强混凝土内部的碎裂和裂纹扩展能力,有效融合了HEA的优异力学性能与Al/PTFE的高能量释放特性。数值模拟表明,内衬对HEA射流具有抑制径向发散、提升射流中段凝聚性的“包覆”作用,但其多次碰撞-追随-分离行为也会延迟系统动态平衡。进一步建立了该复合罩分区成型理论模型,通过引入能量损失系数修正爆轰能量传递过程。通过理论预测结果与数值模拟结果的对比,形成的射流半径与杵体半径的误差小于15%。在此基础上分析了内衬厚度和高度对射流成型的影响规律,确定最优参数为厚度3.5 mm、高度12 mm,可在射流凝聚性、长度及毁伤威力之间实现最佳平衡。
  • 图  1  含能复合药型罩实物

    Figure  1.  Physical prototype of energetic composite liner

    图  2  聚能装药结构及试验现场布置

    Figure  2.  Shaped charge structure and test site layout

    图  3  2种结构药型罩试验结果

    Figure  3.  Test results of liners with two structural types

    图  4  网格收敛性验证结果

    Figure  4.  Mesh convergence verification results

    图  5  数值模拟模型

    Figure  5.  Numerical simulation model

    图  6  2种药型罩结构在相同时刻成型结果对比

    Figure  6.  Comparison of forming results of two liner structures at the same time instants

    图  7  有效射流的长度与直径示意

    Figure  7.  Schematic of effective jet length and diameter

    图  8  有效射流最大直径对比

    Figure  8.  Comparison of maximum diameter of effective jet

    图  9  有效射流长度对比

    Figure  9.  Comparison of length of effective jet

    图  10  观测点轴向速度

    Figure  10.  Axial velocity of observation point

    图  11  观测点径向速度

    Figure  11.  Radial velocity of observation point

    图  12  复合罩在匀加速与变速阶段速度云图

    Figure  12.  Velocity contour maps of the composite liner at the stages of uniform acceleration and variable acceleration

    图  13  复合罩各参量示意

    Figure  13.  Schematic of various parameters of the composite liner

    图  14  不同内衬厚度观测点2径向速度对比

    Figure  14.  Comparison of radial velocity at observation point 2 under different inner lining thicknesses

    图  15  不同内衬厚度完全成型的射流形貌对比

    Figure  15.  Comparison of morphology of fully formed jets under different inner lining thicknesses

    图  16  不同内衬高度观测点2径向速度对比

    Figure  16.  Comparison of radial velocity at observation point 2 under different inner lining heights

    图  17  不同内衬高度完全成型的射流形貌对比

    Figure  17.  Comparison of morphology of fully formed jets under different inner lining heights

    表  1  混凝土的毁伤结果对比

    Table  1.   Comparison of concrete damage results

    试验工况D1/cmd/cmH1/cmD2/cmH2/cm
    复合结构48.17.610.350.417.3
    单HEA61.85.815.065.617.3
    下载: 导出CSV

    表  2  药型罩和外壳数值模拟材料参数[29-30]

    Table  2.   Numerical simulation material parameters[29-30]

    材料ρ/(g·cm−3)G/GPaA/MPaB/MPanCmc0/(m·s−1)Sγ来源
    HEA5.832.51885.2276.40.6950.8941.040970.9721.22文献[29]
    Al/PTFE2.270.6668.044250.61.80.41.014009.250.9文献[30]
    45钢7.8580.778003200.280.0641.0645691.492.17文献[29]
    下载: 导出CSV

    表  3  JH-2炸药数值模拟材料参数[31]

    Table  3.   Numerical simulation material parameters of JH-2 explosive[31]

    Ae/GPa Be/GPa R1 R2 ω E0/GPa
    630 6.801 4.1 1.3 0.36 10
    下载: 导出CSV

    表  4  空气数值模拟材料参数[32]

    Table  4.   Numerical simulation material parameters of air[32]

    ρa/(kg·m−3) C0C3 C4 C5 E1/kPa V0
    1.225 0 0.4 0.4 250 1.0
    下载: 导出CSV

    表  5  理论预测结果与数值模拟结果对比

    Table  5.   Comparison between theoretical predictions and numerical simulation results

    参数理论预测值/cm数值模拟值/cm相对误差/%
    Aj1.721.5510.97
    As2.452.239.87
    下载: 导出CSV
  • [1] ZHENG H L, WANG Z X, WANG M Y, et al. Research on jet formation and penetration enhancement of spherical-segment lightweight high-entropy alloy liners against finite-thickness reinforced concrete [J]. Structures, 2025, 80: 109814. DOI: 10.1016/j.istruc.2025.109814.
    [2] 王岩鑫. PTFE/Al活性聚能射流成形机制研究[D]. 太原: 中北大学, 2023: 1–2. DOI: 10.27470/d.cnki.ghbgc.2023.001005.

    WANG Y X. Research on the jet formation mechanism of PTFE/Al reactive shaped charge [D]. Taiyuan: North University of China, 2023: 1–2. DOI: 10.27470/d.cnki.ghbgc.2023.001005.
    [3] 郭焕果, 卢冠成, 何所, 等. 活性复合罩聚能装药侵彻增强行为 [J]. 北京理工大学学报, 2020, 40(12): 1259–1266. DOI: 10.15918/j.tbit1001-0645.2019.247.

    GUO H G, LUO G C, HE S, et al. Penetration enhancement behavior of reactive material double-layered liner shaped charge [J]. Transactions of Beijing Institute of Technology, 2020, 40(12): 1259–1266. DOI: 10.15918/j.tbit1001-0645.2019.247.
    [4] BAKER E L, DANIELS A S, NG K W, et al. Barnie: a unitary demolition warhead [C]// Proceedings of the 19th International Symposium on Ballistics. Interlaken, Switzerland: International Ballistics Committee, 2001: 569–574.
    [5] DANIELS A S, BAKER E L, DEFISHER S E, et al. Bam bam: large scale unitary demolition warheads [C]// Proceedings of the 23th International Symposium on Ballistics. Tarragona, Spain, 2007: 125–130.
    [6] DANIELS A S, BAKER E L, NG K W. A unitary demolition warhead [C]//US Army. Picatinny Arsenal, Mines. Demolition and Non-lethal Weapons Conference. New Orleans, LA, 2003: 9–11.
    [7] WANG Y Z, YU Q B, ZHENG Y F, et al. Formation and penetration of jets by shaped charges with reactive material liners [J]. Propellants, Explosives, Pyrotechnics, 2016, 41(4): 618–622. DOI: 10.1002/prep.201500298.
    [8] 张雪朋, 肖建光, 余庆波, 等. 活性药型罩聚能装药破甲后效超压特性 [J]. 兵工学报, 2016, 37(8): 1388–1394. DOI: 10. 3969/j. issn. 1000-1093. 2016. 08. 007. DOI: 10.3969/j.issn.1000-1093.2016.08.007.

    ZHANG X P, XIAO J G, YU Q B, et al. Armor penetration aftereffect overpressure produced by reactive material liner shaped charge [J]. Acta Armamentarii, 2016, 37(8): 1388–1394. DOI: 10.3969/j.issn.1000-1093.2016.08.007.
    [9] YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Advance Engineering Materials, 2004, 6: 299–303. DOI: 10.1002/adem.200300567.
    [10] JIANG L H, LIU X G, GUO Z H, et al. Effect of high strain rate on adiabatic shear susceptibility and microstructures in Al0.4CoCrFeNi high-entropy alloy [J]. Journal of Materials Research and Technology, 2024, 31: 2003–2013. DOI: 10.1016/j.jmrt.2024.06.177.
    [11] 李嘉伟. 药型罩用CoCrFeNiWx高熵合金的本构参数及破甲模拟研究 [D]. 太原: 太原理工大学, 2024: 5. DOI: 10.27352/d.cnki.gylgu.2024.002609.

    LI J W. Constitutive parameters and armor-piercing simulation of CoCrFeNiWx high-entropy alloy for shaped charge liner [D]. Taiyuan: Taiyuan University of Science and Technology, 2024: 5. DOI: 10.27352/d.cnki.gylgu.2024.002609.
    [12] KUMAR D, SEETHARAM R, PONAPPA K. A review on microstructures, mechanical properties and processing of high entropy alloys reinforced composite materials [J]. Journal of Alloys and Compounds, 2024, 972: 172732. DOI: 10.1016/j.jallcom.2023.172732.
    [13] JING Q M, HU L, LI J, et al. Significant strength enhancement of high-entropy alloy via phase engineering and lattice distortion [J]. Journal of Alloys and Compounds, 2024, 976: 172963. DOI: 10.1016/j.jallcom.2023.172963.
    [14] LI R X, BIAN B X, WILD G, et al. Bulk and grain boundary tracer diffusion in multiphase AlCoCrFeNiTi0.2 compositionally complex alloy [J]. Acta Materialia, 2023, 261: 119352. DOI: 10.1016/j.actamat.2023.119352.
    [15] WANG L, ZHANG L T, LU X, et al. Surprising cocktail effect in high entropy alloys on catalyzing magnesium hydride for solid-state hydrogen storage [J]. Chemical Engineering Journal, 2023, 465: 142766. DOI: 10.1016/j.cej.2023.142766.
    [16] 刘承哲, 王海福, 张甲浩, 等. 轻质高熵合金聚能射流毁伤混凝土靶行为研究 [J]. 兵工学报, 2024, 45(S1): 60–69. DOI: 10.12382/bgxb.2024.0642.

    LIU C Z, WANG H F, ZHANG J H, et al. Research on behavior of lightweight high-entropy alloy jet penetrating concrete targets [J]. Acta Armamentarii, 2024, 45(S1): 60–69. DOI: 10.12382/bgxb.2024.0642.
    [17] 鄢阿敏, 乔禹, 戴兰宏. 高熵合金药型罩射流成型与稳定性 [J]. 力学学报, 2022, 54(8): 2119–2130. DOI: 10.6052/0459-1879-22-274.

    YAN A M, QIAO Y, DAI L H. Formation and stability of shaped charge liner jet of CrMnFeCoNi high-entropy alloy [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2119–2130. DOI: 10.6052/0459-1879-22-274.
    [18] LI R X, DING J B, ZHAO Y Y, et al. Preliminary study on the dynamic deformation mechanism of CoCrFeNi high-entropy alloy and its application in the shaped charge liner [J]. Journal of Alloys and Compounds, 2024, 999: 175083. DOI: 10.1016/j.jallcom.2024.175083.
    [19] LI R X, WANG R Q, TIAN Q W, et al. An investigation on the jet formation and penetration characteristics of the CuCoCrFeNi high-entropy alloy liner [J]. AIP Advances, 2024, 14: 055017. DOI: 10.1063/5.0207709.
    [20] WANG X T, WANG B P, LIU X D, et al. Asynchronous deformation behavior of precipitation-hardened high-entropy alloys shaped charge liner under explosive loading [J]. Intermetallics, 2025, 176: 108555. DOI: 10.1016/j.intermet.2024.108555.
    [21] LI R X, CHEN J L, WANG R Q, et al. Performance study of explosively formed projectile using CoCrFeNi high-entropy alloy as a liner [J]. Journal of Applied Physics, 2024, 136: 145901. DOI: 10.1063/5.0231905.
    [22] LIU C Z, ZHENG Y F, ZHANG J H, et al. Experimental and numerical investigation of lightweight high-entropy alloys shaped charge jet and its penetration performance [J]. International Journal of Impact Engineering, 2026, 208: 105512. DOI: 10.1016/j.ijimpeng.2025.105512.
    [23] 郑宇. 双层药型罩毁伤元形成机理研究 [D]. 南京: 南京理工大学, 2008: 12.

    ZHENG Y. Study on the formation mechanism of kill element from shaped charge with double layer liners [D]. Nanjing: Nanjing University of Science and Technology, 2008: 12.
    [24] 辛广华, 杨宝良, 景彤, 等. 双层罩轴向组合式装药结构MEFP数值模拟 [J]. 弹箭与制导学报, 2023, 43(6): 19–28. DOI: 10.15892/j.cnki.djzdxb.2023.06.004.

    XIN G H, YANG B L, JING T, et al. Numerical simulation of MEFP for axial combined charge structures with double layer liners [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2023, 43(6): 19–28. DOI: 10.15892/j.cnki.djzdxb.2023.06.004.
    [25] 刘猛, 马铎, 单海江, 等. 基于正交优化的双层双锥形药型罩结构设计[J/OL]. 兵器材料科学与工程, 2025. DOI: 10. 14024/j.cnki. 1004-244x. 20250519. 007.

    LIU M, MA D, SHAN H J, et al. Design of a double-layer biconical liner structure based on orthogonal optimization [J]. Ordnance Material Science and Engineering, 2025. DOI: 10.14024/j.cnki.1004-244x.20250519.007.
    [26] 李昊, 尹建平, 毕广剑, 等. 截顶辅助双层药型罩射流成型影响研究 [J]. 兵器装备工程学报, 2022, 43(4): 31–35. DOI: 10.11809/bqzbgcxb2022.04.006.

    LI H, YIN J P, BI G J, et al. Study on influence of top-cutting assisted double-layer liner jet forming [J]. Journal of Ordnance Equipment Engineering, 2022, 43(4): 31–35. DOI: 10.11809/bqzbgcxb2022.04.006.
    [27] 黄炳瑜, 熊玮, 张先锋, 等. 双层含能药型罩K装药射流成型及侵彻性能试验 [J]. 含能材料, 2021, 29(2): 149–156. DOI: 10.11943/CJEM2020231.

    HUANG B Y, XIONG W, ZHANG X F, et al. Experimental study on jet formation and penetration performance of double-layered reactive liners with k-charge [J]. Chinese Journal of Energetic Materials, 2021, 29(2): 149–156. DOI: 10.11943/CJEM2020231.
    [28] ZHENG H L, WANG Z X, WANG M Y, et al. Study on mechanical response and penetration mechanism of lightweight BCC high-entropy alloy (Ti2Zr)1.5NbVAl0.5 under extreme dynamic loads [J]. Intermetallics, 2025, 186: 108966. DOI: 10.1016/j.intermet.2025.108966.
    [29] ZHENG H L, WANG Z X, LI Z K, et al. Study on deformation mechanism and energy release characteristics of refractory high-entropy alloy (Ti2Zr)1.5NbVAl0.5 under different loading conditions [J]. Journal of Alloys and Compounds, 2025, 1018: 179031. DOI: 10.1016/j.jallcom.2025.179031.
    [30] 周鑫, 冯彬, 陈力, 等. 活性射流侵彻-内爆作用下半无限混凝土靶中应力波效应 [J]. 含能材料, 2025, 33(7): 689–702. DOI: 10.11943/CJEM2025079.

    ZHOU X, FENG B, CHEN L, et al. Stress wave effect in semi-infinite concrete targets subjected to penetration-implosion action of reactive jet [J]. Chinese Journal of Energetic Materials, 2025, 33(7): 689–702. DOI: 10.11943/CJEM2025079.
    [31] HAO L K, GU W B, ZHANG Y D, et al. Damage of a large-scale reinforced concrete wall caused by an explosively formed projectile (EFP) [J]. Defence Technology, 2023, 28: 280–297. DOI: 10.1016/j.dt.2022.11.003.
    [32] LI W B, WANG X M, LI W B, et al. The effect of annular multi-point initiation on the formation and penetration of an explosively formed penetrator [J]. International Journal of Impact Engineering, 2010, 37: 414–424. DOI: 10.1016/j.ijimpeng.2009.08.008.
    [33] SUN S J, JIANG J W, WANG S Y, et al. Structural design of the fluted shaped charge liner using multi-section optimization method [J]. Defence Technology, 2023, 25: 249–262. DOI: 10.1016/j.dt.2023.01.008.
  • 加载中
图(17) / 表(5)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  5
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-29
  • 修回日期:  2026-01-24
  • 网络出版日期:  2026-01-30

目录

    /

    返回文章
    返回