低冲击加载下JOB-9003炸药的反应阈值

李金河 傅华 曾代朋 李涛

李金河, 傅华, 曾代朋, 李涛. 低冲击加载下JOB-9003炸药的反应阈值[J]. 爆炸与冲击, 2015, 35(6): 876-880. doi: 10.11883/1001-1455(2015)06-0876-05
引用本文: 李金河, 傅华, 曾代朋, 李涛. 低冲击加载下JOB-9003炸药的反应阈值[J]. 爆炸与冲击, 2015, 35(6): 876-880. doi: 10.11883/1001-1455(2015)06-0876-05
Li Jin-he, Fu Hua, Zeng Dai-peng, Li Tao. The reaction threshold of JOB-9003 explosive under low amplitude loading[J]. Explosion And Shock Waves, 2015, 35(6): 876-880. doi: 10.11883/1001-1455(2015)06-0876-05
Citation: Li Jin-he, Fu Hua, Zeng Dai-peng, Li Tao. The reaction threshold of JOB-9003 explosive under low amplitude loading[J]. Explosion And Shock Waves, 2015, 35(6): 876-880. doi: 10.11883/1001-1455(2015)06-0876-05

低冲击加载下JOB-9003炸药的反应阈值

doi: 10.11883/1001-1455(2015)06-0876-05
详细信息
    作者简介:

    李金河(1979—), 男, 学士, 助理研究员, leejinhe103@163.com

  • 中图分类号: O381

The reaction threshold of JOB-9003 explosive under low amplitude loading

  • 摘要: 发展了一种研究炸药反应阈值的实验方法和分析技术:采用火药炮发射飞片的加载技术产生低冲击加载压力,应用电磁粒子速度计测量JOB-9003炸药后界面与PMMA之间界面粒子速度。通过分析界面粒子速度曲线,得到了低冲击加载下炸药与PMMA之间的界面粒子速度历史,获得了入射压力与未反应和反应后的界面粒子速度之间的up-p关系。JOB-9003炸药在低冲击加载下的化学反应阈值和点火阈值分别为1.42、2.62 GPa。
  • 图  1  实验布局示意图

    Figure  1.  Schematic drawing of experimental layout

    图  2  典型的界面粒子速度实验波形

    Figure  2.  Typical experimental waves of interface velocity

    图  3  测量界面粒子速度结果与未反应炸药计算结果对比

    Figure  3.  Comparison of interface particle velocity of experiment and calculation

    图  4  界面粒子速度与入射压力关系图

    Figure  4.  Interface particle velocity vs. input pressure

    表  1  材料参数[12]

    Table  1.   material parameters

    材料c/(mm·μs-1)λρ/(g·cm-3)
    JOB-90032.492.091.84
    PMMA2.601.521.19
    Al5.251.392.78
    不锈钢(0Cr18Ni9)4.691.337.80
    下载: 导出CSV

    表  2  界面粒子速度随加载压力的变化情况

    Table  2.   Interface particle velocity of explosives vs. input pressure

    实验飞片v/(m·s-1)p/GPaupn/(m·s-1)upr/(m·s-1)upc/(m·s-1)备注
    1Al3201.28152152153未反应。取upr=upn
    2Al3651.42185185182未反应。取upr=upn
    3Al4501.75235305235慢反应。
    4Al4762.02287647244慢反应。
    5Al5242.26319788273慢反应。
    6Al5952.62418958305快速反应。
    7Al6242.784551417316快速反应。
    8Steel5653.085152280335爆炸。upn根据未反应实验点拟合得到。
    下载: 导出CSV
  • [1] Tarver C M, Chidester S K. On the violence of high explosive reactions[R]. UCRL-CONF-202375, 2004.
    [2] Baker P J. Impact-initiated detonative and nondetonative reactions in confined tritonal, composition H-6, and PBXN-109[C]//Lee E L. 11th Symposium(International)on Detonation, Snowmass. Colorado, 1996: 254-265.
    [3] Chidester S K, Green L G, Lee C G. A frictional work predictive method for the ignition of solid high explosives from low pressure impacts//Short J M, Tasker D J. 10th Symposium(International)on Detonation. Boston, Massachusetts, 1993: 785-792.
    [4] Chidester S K, Tarver C M, Graza R. Low amplitude impact testing and analysis of pristine and aged solid high explosives[C]//Lee E L. 11th Symposium(International)on Detonation. Snowmass, Corolado, 1998: 93-100.
    [5] Liddiard T P, Forbes J W. Physical evidence of different chemical reactions in explosives as a function of stress[C]//Lee E L, Short J M. 9th Symposium(International)on Detonation. Portland, Oregon, 1989: 1235-1242.
    [6] Lemar E R, Liddiard T P, Forbes J W. The analysis of modified gap test data for several insensitive explosives[C]//Short J M, Tasker D J. 10th Symposium(International)on Detonation. Boston, Massachusetts, 1993: 731-737.
    [7] Tasker D G. Shock initiation and subsequent growth of reaction in explosives and propellants: The low amplitude shock initiation, LASI[C]//Short J M. 7th Symposium(International)on Detonation. Annapolis, Maryland, 1981: 285-298.
    [8] Kroh M, Thoma K, Arnold W, et al. Shock sensitivity and performance of several high explosives[C]//Short J M. 8th Symposium(International)on Detonation. Albuquerque, New Mexico, 1985: 1131-1138.
    [9] 李金河, 文尚刚, 谭多望.低冲击作用下JO-9159炸药的反应阈值[J].爆炸与冲击, 31(2), 2011: 148-152. doi: 10.11883/1001-1455(2011)02-0148-05

    Li Jin-he, Wen Shang-gang, Tan Duo-wang. The experimental study on the reaction threshold of explosive under low amplitude shock[J]. Explosion and Shock Waves, 2011, 31(2): 148-152. doi: 10.11883/1001-1455(2011)02-0148-05
    [10] Gustavsen R L, Sheffield S A, Alcon R R, et al. Shock initiation of new and aged PBX-9501 Measured with embedded electromagnetic particle velocity gauges[R]. LA-13634-MS, 1999.
    [11] 李金河, 赵继波, 谭多望.用组合式电磁粒子速度计研究JO-9159炸药的爆轰增长过程[C]//第八届全国爆轰学术会议论文集.腾冲, 2010: 58-63.
    [12] Marsh S P. LASL shock Hugoniot data[M]. Berkeley: University of California Press, 1980.
    [13] Wackerle J, Stacy H L, Seitz W L. Velocimetry studies on the prompt initiation of PBX 9502[C]//Short J M, Tasker D J. 10th Symposium(International)on Detonation. Boston, Massachusetts, 1993: 468-475.
    [14] Forest C A, Wackerle J, Dick J J, et al. Lagrangian analysis of MIV gauge experiments on PBX 9502 using the mass-displacement moment function[C]//Lee E L, Short J M. 9th Symposium(International)on Detonation. Portland, Oregon, 1989: 683-692.
    [15] Gustavsen R L, Sheffield S A, Alcon R R. Measurements of shock initiation in the tri-amino-tri-nirtro-benzene based explosive PBX 9502: Wave forms from embedded gauges and comparison of four different material lots[J]. Journal of Applied Physics, 2006, 99(11): 114907. doi: 10.1063/1.2195191
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  3420
  • HTML全文浏览量:  443
  • PDF下载量:  514
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-17
  • 修回日期:  2014-07-15
  • 刊出日期:  2015-12-10

目录

    /

    返回文章
    返回