波形整形技术在Hopkinson杆实验中的应用

果春焕 周培俊 陆子川 常云鹏 邹广平 姜风春

果春焕, 周培俊, 陆子川, 常云鹏, 邹广平, 姜风春. 波形整形技术在Hopkinson杆实验中的应用[J]. 爆炸与冲击, 2015, 35(6): 881-887. doi: 10.11883/1001-1455(2015)06-0881-07
引用本文: 果春焕, 周培俊, 陆子川, 常云鹏, 邹广平, 姜风春. 波形整形技术在Hopkinson杆实验中的应用[J]. 爆炸与冲击, 2015, 35(6): 881-887. doi: 10.11883/1001-1455(2015)06-0881-07
Guo Chun-huan, Zhou Pei-jun, Lu Zi-chun, Chang Yun-peng, Zou Guang-ping, Jiang Feng-chun. Application of pulse shaping technique in Hopkinson bar experiments[J]. Explosion And Shock Waves, 2015, 35(6): 881-887. doi: 10.11883/1001-1455(2015)06-0881-07
Citation: Guo Chun-huan, Zhou Pei-jun, Lu Zi-chun, Chang Yun-peng, Zou Guang-ping, Jiang Feng-chun. Application of pulse shaping technique in Hopkinson bar experiments[J]. Explosion And Shock Waves, 2015, 35(6): 881-887. doi: 10.11883/1001-1455(2015)06-0881-07

波形整形技术在Hopkinson杆实验中的应用

doi: 10.11883/1001-1455(2015)06-0881-07
基金项目: 国家自然科学基金项目(11172074, 11402060);中央高校基本科研业务费专项基金项目(HEUCFD15010)
详细信息
    作者简介:

    果春焕(1980—), 女, 博士, 讲师

    通讯作者:

    姜风春, fengchunjiang@hrbeu.edu.cn

  • 中图分类号: O347

Application of pulse shaping technique in Hopkinson bar experiments

  • 摘要: 由于波形整形技术可减小Hopkinson杆实验在撞击过程中产生的高频振荡以及实现试样在受载过程中的恒应变率加载,因此,波形整形技术越来越受到关注。本文中详细介绍了波形整形技术在Hopkinson杆的动态压缩、拉伸、巴西圆盘、弯曲断裂等实验中的研究进展,并给出了该技术在应用中需注意的问题。
  • 图  1  带有预加载杆和虚拟试样的Hopkinson压杆装置系统[13]

    Figure  1.  Hopkinson pressure bar apparatus with pre-loading bar and dummy specimen[13]

  • [1] Gerlach R, Sivasubramaniam K, Sathianathan C S, et al. A novel method for pulse shaping of split Hopkinson tensile bar signals[J]. International Journal of Impact Engineering, 2011, 38(12): 976-980. doi: 10.1016/j.ijimpeng.2011.08.007
    [2] Nemat-Nasser S, Isaacs J B, Starrett J E. Hopkinson techniques for dynamic recovery experiments[J]. Proceedings of the Royal Society of London Series a-mathematical Physical and Engineering Sciences, 1991, 435(11): 371-391. http://rspa.royalsocietypublishing.org/content/435/1894/371.abstract
    [3] Gerlach R, Kettenbeil C, Petrinic N. A new split Hopkinson tensile bar design[J]. International Journal of Impact Engineering, 2012, 50(12): 63-67. http://www.sciencedirect.com/science/article/pii/S0734743X1200156X
    [4] Chen W, Lu F, Cheng M. Tension and compression tests of two polymers under quasi-static and dynamic loading[J]. Polymer Testing, 2002, 21(2): 113-121. doi: 10.1016/S0142-9418(01)00055-1
    [5] Duffy J, Campbell J D, Hawley R H. On the use of a torsional split Hopkinson bar to study rate effects in 1100-O aluminum[J]. Transactions of the ASME, Journal of Applied Mechanics, 1971, 38(1): 83-91. doi: 10.1115/1.3408771
    [6] Jiang F, Vecchio K S. Hopkinson bar loaded fracture experimental technique: A critical review of dynamic fracture toughness tests[J]. Applied Mechanics Reviews, 2009, 62(060902): 1-39. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=AMREAD000062000006060802000001&idtype=cvips&gifs=Yes
    [7] Chuban V D, Ivanteyev V I, Chudayev B J, et al. Numerical simulation of flutter validated by flight-test data for TU-204 aircraft[J]. Computer Structure, 2002, 80(32): 2551-2563. doi: 10.1016/S0045-7949(02)00221-3
    [8] Saeedi M A, Barkhordari M A. Dynamic behaviour of space structures using models of different pattern density[J]. Computing Developments in Civil and Structural Engineering, 1999: 59-63. http://www.researchgate.net/publication/269077713_Dynamic_Behaviour_of_Space_Structures_using_Models_of_Different_Pattern_Density
    [9] Sinha G, Mukhopadhyay M. Transient dynamic response of arbitrary stiffened shells by the finite element method[J]. Journal of Vibration and Acoustics-Transactions of the ASME, 1995, 117(1): 11-16. doi: 10.1115/1.2873855
    [10] Ghoshal A, Harrison J, Sundaresan M J, et al. Damage detection testing on a helicopter flexbeam[J]. Journal of Intelligent Material Systems and Structures, 2001, 12(5): 315-330. doi: 10.1106/9V39-ETJU-DNMG-TJUF
    [11] 宋博, 姜锡权, 陈为农.霍普金森压杆实验中的脉冲整形技术[C]//第三届全国爆炸力学实验技术交流会论文集.合肥, 2004: 1-70.
    [12] Christensen R J, Swanson S R, Brown W S. Split-Hopkinson-bar tests on rocks under confining pressure[J]. Experimental Mechanics, 1972, 12(11): 508-513. doi: 10.1007/BF02320747
    [13] Ellwood S, Griffiths L J, Parry D J. Materials testing at high constant strain rates[J]. Journal of Physics E: Science Instrument, 1982, 15(3): 280-282. doi: 10.1088/0022-3735/15/3/009
    [14] Parry D J, Walker A G, Dixon P R. Hopkinson bar pulse smoothing[J]. Measurement Science & Technology, 1995, 6(5): 443-446.
    [15] Cloete T J, Westhuizen A V, Kok S, et al. A tapered striker pulse shaping technique for uniform strain rate dynamic compression of bovine bone[J]. DYMAT International Conferences, 2009, 1: 901-907. http://www.researchgate.net/publication/46251659_A_tapered_striker_pulse_shaping_technique_for_uniform_strain_rate_dynamic_compression_of_bovine_bone
    [16] Li X B, Lok T S, Zhao J, et al. Oscillation elimination in the Hopkinson bar apparatus and resultant complete dynamic stress-strain curves for rocks[J]. International Journal of Rock Mechanics & Mining Sciences, 2000, 37(7): 1055-1060. http://www.sciencedirect.com/science/article/pii/S136516090000037X
    [17] Li X B, Lok T S, Zhao J. Dynamic characteristics of granite subjected to intermediate loading rate[J]. Rock Mechanics and Rock Engineering, 2005, 38(1): 21-39.
    [18] Lok T S, Asce M, Zhao P J. Impact response of steel fiber-reinforced concrete using a split Hopkinson pressure bar[J]. Journal of Materials in Civil Engineering, 2004, 16(1): 54-59. http://www.researchgate.net/publication/245307944_Impact_Response_of_Steel_Fiber-Reinforced_Concrete_Using_a_Split_Hopkinson_Pressure_Bar
    [19] Baranowski P, Malachowski J, Gieleta R, et al. Numberical study for determination of pulse shaping design variables in SHPB apparutus[J]. Bulletin of the Polish Academy of Sciences Technical Sciences, 2013, 61(2): 459-466. doi: 10.2478/bpasts-2013-0045
    [20] Naghdabadi R, Ashrafi M J, Arghavani J. Experimental and numerical investigation of pulse-shaped split Hopkinson pressure bar test[J]. Material Science and Engineering: A, 2012, 539(3): 285-293. http://www.sciencedirect.com/science/article/pii/S0921509312001311
    [21] Frew D J, Forrestal M, Chen W. Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar[J]. Experimental Mechanics, 2002, 42(1): 93-106. http://onlinelibrary.wiley.com/resolve/reference/XREF?id=10.1007/BF02411056
    [22] Frew D J, Forrestal M, Chen W. Pulse shaping techniques for testing elastic-plastic materials with a split Hopkinson pressure bar[J]. Experimental Mechanics, 2005, 45(2): 186-195. doi: 10.1007/BF02428192
    [23] Ramirez H, Gonzalez R C. Finite-element simulation of wave propagation and dispersion in Hopkinson bar test[J]. Materials and Design, 2006, 27(1): 36-44. doi: 10.1016/j.matdes.2004.08.021
    [24] 李夕兵, 周子龙, 王卫华.运用有限元和神经网络为SHPB装置构造理想冲头[J].岩石力学与工程学报, 2005, 24(23): 4215-4218. http://d.wanfangdata.com.cn/Periodical/yslxygcxb200523003

    Li Xi-bing, Zhou Zi-long, Wang Wei-hua. Construction of ideal striker for SHPB device based on FEM and neural network[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(23): 4215-4218. http://d.wanfangdata.com.cn/Periodical/yslxygcxb200523003
    [25] Franz C E, Follansbee P S, Wright J. New experimental techniques with the split Hopkinson pressure bar[C]//Berman I, Schroeder J W. 8th Internatinal Conference on High Energy Rate Fabrication, Pressure Vessel and Piping Division, ASME. San Antonio, TX, 1984.
    [26] Follansbee P S. Mechanical testing and evaluations[M]. ASM Handbook, ASM, Materials Park, OH, 1985.
    [27] Woo S C, Kim J T, Cho C H, et al. The dynamic compressive behavior of armor structural materials in split Hopkinson pressure bar test[J]. The Journal of Strain Analysis for Engineering Design, 2013, 48(7): 420-4369. doi: 10.1177/0309324713496084
    [28] 陶俊林, 田常津, 陈裕泽, 等. SHPB系统试件恒应变率加载实验方法研究[J].爆炸与冲击, 2004, 24(5): 413-418. http://www.bzycj.cn/article/id/9978

    Tao Jun-lin, Tian Chang-jin, Chen Yu-ze, et al. Investigation of experimental method to obtain constant strain rate of specimen in SHPB[J]. Explosion and Shock Waves, 2004, 24(5): 413-418. http://www.bzycj.cn/article/id/9978
    [29] Vecchio K S, Jiang F. Improved pulse shaping to achieve constant strain rate and stress equilibrium in split Hopkinson pressure bar testing[J]. Metallurgical and Materials Transactions: A, 2007, 38(11): 2655-2665. doi: 10.1007/s11661-007-9204-8
    [30] Lee O S, Jin S P. Dynamic deformation behavior of bovine femur using SHPB[J]. Journal of Mechanical Science and Technology, 2011, 25(9): 2211-2215. doi: 10.1007/s12206-011-0602-x
    [31] Li W M, Xu J Y. Impact characterization of basalt fiber reinforced geopolymeric concrete using a 100-mm-diameter split Hopkinson pressure bar[J]. Materials Science and Engineering: A, 2009, 513-514(7): 145-153. http://www.sciencedirect.com/science/article/pii/S0921509309001890
    [32] 汪洋, 李玉龙, 刘传雄.利用SHPB测定高应变率下冰的动态力学行为[J].爆炸与冲击, 2011, 31(2): 215-219. doi: 10.11883/1001-1455(2011)02-0215-05

    Wang Yang, Li Yu-long, Liu Chuan-xiong. Dynamic mechanical behaviors of ice at high strain rates[J]. Explosion and Shock Waves, 2011, 31(2): 215-219. doi: 10.11883/1001-1455(2011)02-0215-05
    [33] Chen W, Luo H. Dynamic Compressive responses of intact and damaged ceramics from a single split Hopkinson pressure bar experiment[J]. Experimental Mechanics, 2004, 44(3): 295-299. doi: 10.1007/BF02427896
    [34] Yokoyama T, Nakai K, Yatim N H M. High strain-rate compressive behavior of bulk structural adhesives: Epoxy and methacrylate adhesives[J]. Journal of Solid Mechanics and Materials Engineering, 2012, 6(2): 131-143. http://adsabs.harvard.edu/abs/2012jsmme...6..131y
    [35] Chen W, Lu F, Zhou B. A quartz-crystal-embeded split Hopkinson pressure bar for soft materials[J]. Experimental Mechanics, 2000, 40(1): 1-6. doi: 10.1007/BF02327540
    [36] Song B, Syn C J, Grupido C L, et al. A long split Hopkinson pressure bar(LSHPB)for intermediate-rate characterization of soft materials[J]. Experimental Mechanics, 2008, 48(6): 809-815. doi: 10.1007/s11340-007-9095-z
    [37] 赵习金, 卢芳云, 王悟, 等.入射波整形技术的实验和理论研究[J].高压物理学报, 2004, 18(3): 231-236. http://d.wanfangdata.com.cn/Periodical/gywlxb200403007

    Zhao Xi-jin, Lu Fang-yun, Wang Wu, et al. The experimental and theoretical study on the incident pulse shaping technique[J]. Chinese Journal of High Pressure Physics, 2004, 18(3): 231-236. http://d.wanfangdata.com.cn/Periodical/gywlxb200403007
    [38] 卢芳云, 陈荣, 林玉亮, 等.霍普金森杆实验技术[M].北京: 科学出版社, 2013.
    [39] Erzar B, Forquin P. An experimental method to determine the tensile strength of concrete at high rates of strain[J]. Experimental Mechanics, 2010, 50(7): 941-955. doi: 10.1007/s11340-009-9284-z
    [40] Shazly M, Prakash V, Draper S. Mechanical behavior of Gamma-met PX under uniaxial loading at elevated temperatures and high strain rates[J]. International Journal of Solids and Structures, 2004, 41(22/23): 6485-6503. https://www.sciencedirect.com/science/article/pii/S0020768304002410
    [41] Saksala T, Hokka M, Kuokkala V, et al. Numerical modeling and experimentation of dynamic Brazilian disc test on Kuru granite[J]. International Journal of Rock Mechanics & Mining Sciences, 2013, 59(4): 128-138. http://www.sciencedirect.com/science/article/pii/S1365160912002468
    [42] Chen R, Dai F, Qin J, Lu F. Flattened Brazilian disc method for determining the dynamic tensile stress-strain curve of low strength brittle solids[J]. Experimental Mechanics, 2013, 53(7): 1153-1159. doi: 10.1007/s11340-013-9733-6
    [43] Dong S, Wang Y, Xia Y. A finite element analysis for using Brazilian disk in split Hopkinson pressure bar to investigate dynamic frac-ture behavior of brittle polymer materials[J]. Polymer Testing, 2006, 25(7): 943-952. doi: 10.1016/j.polymertesting.2006.06.003
    [44] Dai F, Chen R, Xia K. A semi-circular bend technique for determining dynamic fracture toughness[J]. Experimental Mechanics, 2010, 50(6): 783-791. doi: 10.1007/s11340-009-9273-2
    [45] Dai F, Chen R, Iqbal M J, et al. Dynamic cracked chevron notched Brazilian disc method for measuring rock fracture parameters[J]. International Journal of Rock Mechanics & Mining Sciences, 2010, 47(4): 606-613. https://www.sciencedirect.com/science/article/pii/S1365160910000535
    [46] vora V M F, Jain N, Shukla A. Fabrication, characterization, and dynamic behavior of polyester/TiO2 nanocomposites[J]. Materials Science and Engineering: A, 2003, 361(1/2): 358-366. https://www.sciencedirect.com/science/article/pii/S0921509303005367
    [47] Jiang F, Vecchio K S, Rohatgi A. Analysis of modified split Hopkinson pressure bar dynamic fracture test using an inertia model[J]. International Journal of Fracture, 2004, 126(2): 143-164. doi: 10.1023/B:FRAC.0000026363.05467.2b
    [48] Ogawa K, Higashida F. Impact three-point bending tests by applying ramped incident wave[J]. Reinforced Plastics, 1990, 36: 123-129.
    [49] Kusaka T, Yamauchi Y, Kurokawa T. Effects of strain rate on mode Ⅱ interlaminar fracture toughness in carbon-fibre/epoxy laminated composites[J]. Journal de Physique Ⅳ: C, 1994, 4(8): 671-676. https://hal.archives-ouvertes.fr/docs/00/25/33/43/PDF/ajp-jp4199404C8102.pdf
    [50] Kusaka T, Kurokawa T, Hojo M, et al. Evaluation of mode Ⅱ interlaminar fracture toughness of composite laminates under dynamic loading[J]. Key Engineering Materials, 1998, 141/142/143: 477-500. https://www.scientific.net/KEM.141-143.477
    [51] Todo M, Takahashi K. Measurement of dynamic fracture toughness of polymeric materials using impact bend test[J]. Engineering Science Reports, Kyushu University, 1998, 20: 267-273. https://www.sciencedirect.com/science/article/pii/S0142941809001056
    [52] Todo M, Tanaka A, Arakawa K. Examination of SHPB type impact fracture toughens testing method by dynamic finite element analysis[J]. Society of Materials Science of Japan, 2006, 55(9): 813-818. doi: 10.2472/jsms.55.813
    [53] Jiang F, Vecchio K S. Dynamic effects in Hopkinson bar four-point bend fracture[J]. Metallurgical and Materials Transactions: A, 2007, 38(12): 2896-2906. doi: 10.1007/s11661-007-9301-8
    [54] Nakamura T, Shih C F, Freund L B. Elastic-plastic analysis of a dynamically loaded circumferentially notched round bar[J]. Engineering Fracture Mechanics, 1985, 22(3): 437-452. doi: 10.1016/0013-7944(85)90144-4
    [55] Wang Q Z, Jia X M. The flattened Brazilian disc specimen used for testing elastic, modulus, tensile strength and fracture toughness of brittle rocks: Analysis and numerical results[J]. International Journal of Rock Mechanics and Minner Science, 2004, 41(2): 245-253. doi: 10.1016/S1365-1609(03)00093-5
    [56] Wang Q Z, Li W, Song X L. A method for testing dynamic tensile strength and elastic modulus of rock materials using SHPB[J]. Pure and Applied Geophysics, 2006, 163(5): 1091-1100. doi: 10.1007/s00024-006-0056-8
    [57] 张盛, 王启智.采用中心圆孔裂缝平台圆盘确定岩石的动态断裂韧度[J].岩土工程学报, 2006, 28(6): 723-728.

    Zhang Sheng, Wang Qi-zhi. Method for determination of dynamic fracture toughness of rock using holed-crack flattened disc specimen[J]. Chinese Journal of Geotechical Engineering, 2006, 28(6): 723-728.
    [58] Bacon C, Färm J, Lataillade J L. Dynamic fracture toughness determined from load-point displacement[J]. Experimental Mechanics, 1994, 20(1): 217-223. doi: 10.1007/BF02319758
  • 加载中
图(1)
计量
  • 文章访问数:  4153
  • HTML全文浏览量:  501
  • PDF下载量:  779
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-16
  • 修回日期:  2014-11-18
  • 刊出日期:  2015-12-10

目录

    /

    返回文章
    返回