活性材料冲击释能行为研究进展

汪德武 任柯融 江增荣 赵宏伟 陈荣 郭宝月

汪德武, 任柯融, 江增荣, 赵宏伟, 陈荣, 郭宝月. 活性材料冲击释能行为研究进展[J]. 爆炸与冲击, 2021, 41(3): 031408. doi: 10.11883/bzycj-2020-0337
引用本文: 汪德武, 任柯融, 江增荣, 赵宏伟, 陈荣, 郭宝月. 活性材料冲击释能行为研究进展[J]. 爆炸与冲击, 2021, 41(3): 031408. doi: 10.11883/bzycj-2020-0337
WANG Dewu, REN Kerong, JIANG Zengrong, ZHAO Hongwei, CHEN Rong, GUO Baoyue. Shock-induced energy release behaviors of reactive materials[J]. Explosion And Shock Waves, 2021, 41(3): 031408. doi: 10.11883/bzycj-2020-0337
Citation: WANG Dewu, REN Kerong, JIANG Zengrong, ZHAO Hongwei, CHEN Rong, GUO Baoyue. Shock-induced energy release behaviors of reactive materials[J]. Explosion And Shock Waves, 2021, 41(3): 031408. doi: 10.11883/bzycj-2020-0337

活性材料冲击释能行为研究进展

doi: 10.11883/bzycj-2020-0337
基金项目: 国家自然科学基金(11672328)
详细信息
    作者简介:

    汪德武(1967- ),男,博士,研究员,Dividwwyy@sohu.com

    通讯作者:

    陈 荣(1981- ),男,博士,副教授,r_chen@nudt.edu.cn

  • 中图分类号: O389

Shock-induced energy release behaviors of reactive materials

  • 摘要: 活性材料是一种具备释能特性的新型材料,其在冲击导致的高压/高温作用下可以发生化学反应,释放大量的化学能,因此在破片、聚能破甲战斗部等军事领域有广泛的应用潜力。为了实现对活性材料释能过程的设计与控制,推进活性材料武器化应用进程,就必须解答活性材料冲击释能行为中所包含的一系列复杂的力-热-化耦合问题。近40年来,对活性材料的冲击释能行为已开展了大量研究,本文在此基础上系统梳理了活性材料的冲击诱发化学反应机理、动力学以及相关效应的研究现状,重点关注活性材料的冲击释能实验表征技术、冲击诱发化学反应理论模型以及考虑力-热-化耦合的冲击压缩数值模拟方法等3方面的研究进展。总结认为,对活性材料冲击释能行为的研究已经具有一定的积淀,但目前对实验中超快化学反应行为的实时诊断研究还缺乏更加丰富、精细、直观的表征与探索,相关理论与数值模拟研究尚未建立能够完整描述活性材料冲击释能行为的力-热-化理论模型,缺乏能够从宏观尺度描述冲击释能行为的有效方法。因此,超快化学反应实验表征技术、宏观角度的力-热-化机理与模型建立及其数值模拟应用以及具备可调性能的活性材料制备新工艺3方面研究内容将是推进活性材料未来军事化应用的重点关注对象。
  • 图  1  惰性/活性破片对航空煤油打击(上)与航空电子设备打击(下)效果对比[14]

    Figure  1.  Comparison of the effect of inert/active chips against aviation kerosene (upper) and avionics (lower)[14]

    图  2  平板撞击实验[28]

    Figure  2.  Plate impact experiment[28]

    图  3  Al/Ni材料的输入压力-冲击波速度曲线[31]

    Figure  3.  Input stress-shock wave velocity curves for Al/Ni materials[31]

    图  4  Ni/Al实验测量状态方程与模拟计算的状态方程对比[35]

    Figure  4.  Ni/Al experimental measurement equation of state is compared with the simulation calculation equation of state[35]

    图  5  直接弹道实验

    Figure  5.  Direct trajectory experiment

    图  6  Ti/Si粉末微观结构和XRD分析结果[51]

    Figure  6.  Microstructure and XRD results of Ti/Si mixture[51]

    图  7  直接弹道实验回收试样分析结果[59]

    Figure  7.  Analysis results of recovered samples in direct trajectory experiment[59]

    图  8  Graham[61]提出的冲击诱发化学反应构图

    Figure  8.  Shock-induced chemical reaction model proposed by Graham[61]

    图  9  反应动力学参数计算结果[66]

    Figure  9.  Calculation results of kinetic parameter of reaction[66]

    图  10  离散元模型的冲击反应算例[63]

    Figure  10.  An example of impact response by the discrete element method model[63]

    图  11  两种Ni/Al粉末的冲击波前沿压力面分布[78]

    Figure  11.  Pressure surface profiles of two types of Ni/Al particles[78]

    图  12  活性材料的多尺度模型冲击释能数值模拟计算流程[84-85]

    Figure  12.  Flow of numerical simulation of RMs impact release energy with the multi-scale model[84-85]

    图  13  中尺度计算模型模拟的Al/Ni粉末混合物在冲击压缩状态下的温度云图[86]

    Figure  13.  Temperature cloud maps of Al/Ni powder mixture under impact compression simulated by the mesoscale calculation model[86]

    图  14  分子动力学模拟计算结果:在Al/Ni颗粒界面接触处出现了金属相变与金属间化学反应[87]

    Figure  14.  Molecular dynamics simulation results: metal phase transitions and intermetallic chemical reactionsoccurred at the interface of Al/Ni particles[87]

  • [1] WILLIS M J, JASON T D. Effect of aluminum particle size on the impact initiation of pressed rods [J]. Shock Compression of Condensed Matter, 2007, CP955: 971–974.
    [2] HAMBLING D. Behind the reactive materials revolution [N/OL]. [2008–05–07] [2020–09–22] https://www.wired.com/2008/05/reactive-revolu-3/.
    [3] 张先锋, 赵晓宁. 多功能含能结构材料研究进展 [J]. 含能材料, 2009, 17(6): 731–739. DOI: 10.3969/j.issn.1006-9941.2009.06.021.

    ZHANG X F, ZHAO X N. Review on multifunctional energetic structural materials [J]. Chinese Journal of Energetic Materials, 2009, 17(6): 731–739. DOI: 10.3969/j.issn.1006-9941.2009.06.021.
    [4] XIONG W, ZHANG X F, ZHENG L, et al. The shock-induced chemical reaction behaviour of Al/Ni composites by cold rolling and powder compaction [J]. Journal of Materials Science, 2019, 54(1): 6651–6667. DOI: 10.1007/s10853-019-03357-3.
    [5] CHENG J L, HNG H H, LEE Y W, et al. Kinetic study of thermal- and impact-initiated reactions in Al-Fe2O3 nanothermite [J]. Combustion and Flame, 2010, 157(12): 2241–2249. DOI: 10.1016/j.combustflame.2010.07.012.
    [6] PERRY W L, TAPPAN B C, REARDON B L, et al. Energy release characteristics of the nanoscale aluminum-tungsten oxide hydrate metastable intermolecular composite [J]. Journal of Applied Physics, 2007, 101(6): 064313. DOI: 10.1063/1.2435797.
    [7] WANG L, LIU J X, LI S K, et al. Insensitive high-energy energetic structural material of tungsten-polytetrafluoroethylene-aluminum composites [J]. AIP Advances, 2015, 5(11): 117142. DOI: 10.1063/1.4936557.
    [8] FENG B, FANG X, LI Y C, et al. Influence of processing techniques on mechanical properties and impact initiation of an Al-PTFE reactive material [J]. Central European Journal of Energetic Materials, 2016, 13(4): 989–1004. DOI: 10.22211/cejem/61496.
    [9] HERBOLD E B, JORDAN J L, THADHANI N N. Effects of processing and powder size on microstructure and reactivity in arrested reactive milled Al+Ni [J]. Acta Materialia, 2011, 59(17): 6717–6728. DOI: 10.1016/j.actamat.2011.07.029.
    [10] XIONG W, ZHANG X F, WU Y, et al. Influence of additives on microstructures, mechanical properties and shock-induced reaction characteristics of Al/Ni composites [J]. Journal of Alloys and Compounds, 2015, 648: 540–549. DOI: 10.1016/j.jallcom.2015.07.004.
    [11] WEI H Y, YOO C S. Dynamic responses of reactive metallic structures under thermal and mechanical ignitions [J]. Journal of Materials Research, 2012, 27(21): 2705–2717. DOI: 10.1557/jmr.2012.302.
    [12] 刘晓俊, 任会兰, 宁建国. Zr-W多功能含能结构材料的制备及动态压缩特性 [J]. 复合材料学报, 2016, 33(10): 2297–2303. DOI: 10.13801/j.cnki.fhclxb.20160315.001.

    LIU X J, REN H L, NING J G. Preparation and dynamic compression properties of Zr-W multifunctional energetic structural material [J]. Journal of Composite Materials, 2016, 33(10): 2297–2303. DOI: 10.13801/j.cnki.fhclxb.20160315.001.
    [13] REN K R, CHEN R. LIN Y L, et al Probing the impact energy release behavior of Al/Ni-based reactive metals with experimental and numerical methods [J]. Metals, 2019, 9(5): 499. DOI: 10.3390/met9050499.
    [14] Committee on Advanced Energetic Materials and Manufacturing Technologies, National Research Council. Advanced energetic materials [M]. Washington D C: The National Academies Press, 2004. DOI: 10.17226/10918.
    [15] 丁亮亮. PELE弹活性内芯配方与弹体结构设计及毁伤机理研究 [D]. 长沙: 国防科技大学, 2019.
    [16] WADDELL J T, BOOTES T H, BUDY G D, et al. Reactive shaped charge, reactive liner, and method for target penetration using a reactive shaped charge: US8037829B1 [P]. 2011-08-18.
    [17] BATSANOV S S, DORONIN G S, KLOCHKOV S V, et al. Synthesis reactions behind shock fronts [J]. Combustion, Explosion, and Shock Waves, 1986, 22(6): 765–768. DOI: 10.1007/BF00751890.
    [18] BAUER F. Ferroelectric properties and shock response of a poled PVF2 polymer and of VF2/C2F3H copolymers [C] // Shock Waves in Condensed Matter. Boston, MA: Springer, 1986: 483–496. DOI: 10.1007/978-1-4613-2207-8_69.
    [19] GRAHAM R A, ANDERSON M U, BAUER F, et al. Piezoelectric polarization of the ferroelectric polymer PVDF from 10 MPato 10 GPa: studies of loading-path dependence [C]// SCHMIDT S C, DICK R D, FORBES J W, et al. Shock Compression of Condensed Matter. Amsterdam: Elsevier, 1992: 883–886. DOI: 10.1016/B978-0-444-89732-9.50203-X.
    [20] NELLIS W J, MITCHELL A C, MCCANDLESS P C, et al. Electronic energy gap of molecular hydrogen from electrical conductivity measurements at high shock pressures [J]. Physical Review Letters, 1992, 68(19): 2937–2940. DOI: 10.1103/PhysRevLett.68.2937.
    [21] BOSLOUGH M B. Shock-induced chemical reactions in nickel-aluminum powder mixtures: radiation pyrometer measurements [J]. Chemical Physics Letters, 1989, 160(5–6): 618–622. DOI: 10.1016/0009-2614(89)80074-0.
    [22] BARKER L M, HOLLENBACH R E. Laser interferometer for measuring high velocities of any reflecting surface [J]. Journal of Applied Physics, 1972, 43(11): 4669–4675. DOI: 10.1063/1.1660986.
    [23] BARKER L M, HOLLENBACH R E. Interferometer technique for measuring the dynamic mechanical properties of materials [J]. Review of Scientific Instruments, 1965, 36(11): 1617–1620. DOI: 10.1063/1.1719405.
    [24] MOORE D S, SCHMIDT S C. Experimental molecular spectroscopy in shock-compressed materials [C] // Proceedings the 5th APS Topical Conference on ‘Shock Waves in Condensed Matter’. Monterey, CA, USA: APS, 1987.
    [25] GUPTA Y M. Time-resolved optical spectroscopy under shock loading: electronic and chemical changes in liquid carbon disulfide [J]. High Pressure Research, 1992, 10(5–6): 717–732. DOI: 10.1080/08957959208225324.
    [26] DLOTT D D. Ultrafast spectroscopy of shock waves in molecular materials [J]. Annual Review of Physical Chemistry, 1999, 50(1): 251–278. DOI: 10.1146/annurev.physchem.50.1.251.
    [27] TROTT W M, KNUDSON M D, CHHABILDAS L C, et al. Measurements of spatially resolved velocity variations in shock compressed heterogeneous materials using a line-imaging velocity interferometer [J]. AIP Conference Proceedings, 2000, 505(1): 993–998. DOI: 10.1063/1.1303635.
    [28] EAKINS D E, THADHANI N N. The shock-densification behavior of three distinct Ni+Al powder mixtures [J]. Applied Physics Letters, 2008, 92(11): 111903. DOI: 10.1063/1.2896653.
    [29] BENNETT L S, SORRELL F Y, SIMONSEN I K, et al. Ultrafast chemical reactions between nickel and aluminum powders during shock loading [J]. Applied Physics Letters, 1992, 61(5): 520–521. DOI: 10.1063/1.107874.
    [30] IYER K R, BENNETT L S, SORRELL F Y, et al. Solid state chemical reactions at the shock front [J]. AIP Conference Proceedings, 1994, 309(1): 1337–1340. DOI: 10.1063/1.46457.
    [31] EAKINS D, THADHANI N N. Shock-induced reaction in a flake nickel+spherical aluminum powder mixture [J]. Journal of Applied Physics, 2006, 100(11): 113521. DOI: 10.1063/1.2396797.
    [32] GRAHAM R A, ANDERSON M U, HORIE Y, et al. Pressure measurements in chemically reacting powder mixtures with the Bauer piezoelectric polymer gauge [J]. Shock Waves, 1993, 3(2): 79–82. DOI: 10.1007/BF02115887.
    [33] XU X, THADHANI N N. Investigation of shock-induced reaction behavior of as-blended and ball-milled Ni+Ti powder mixtures using time-resolved stress measurements [J]. Journal of Applied Physics, 2004, 96(4): 2000–2009. DOI: 10.1063/1.1773380.
    [34] MCQUEEN R G, MARSH S P, TAYLOR J W, et al. The equation of state of solids from shock wave studies [M]// KINSLOW R. High Velocity Impact Phenomena. New York: Academic Press, 1970.
    [35] KELLY S C, THADHANI N N. Shock compression response of highly reactive Ni+Al multilayered thin foils [J]. Journal of Applied Physics, 2016, 119(9): 095903. DOI: 10.1063/1.4942931.
    [36] AMES R G. Vented chamber calorimetry for impact-initiated energetic materials [C] // Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno, USA: AIAA, 2005: 1013. DOI: 10.2514/6.2005-279.
    [37] AMES R G. Energy release characteristics of impact-initiated energetic materials [C] // MRS Online Proceeding Library. UK: Cambridge University Press, 2005: 0896-H03-08. DOI: 10.1557/PROC-0896-H03-08.
    [38] 王海福, 刘宗伟, 俞为民, 等. 活性破片能量输出特性实验研究 [J]. 北京理工大学学报, 2009, 29(8): 663–666. DOI: 1001-0645(2009)08-0663-04.

    WANG H F, LIU Z W, YU W M, et al. Experimental investigation of energy release characteristics of reactive fragments [J]. Transactions of Beijing Institute of Technology, 2009, 29(8): 663–666. DOI: 1001-0645(2009)08-0663-04.
    [39] ZHANG X F, SHI A S, QIAO L, et al. Experimental study on impact-initiated characters of multifunctional energetic structural materials [J]. Journal of Applied Physics, 2013, 113(8): 083508. DOI: 10.1063/1.4793281.
    [40] LUO P G, WANG Z C, JIANG C L, et al. Experimental study on impact-initiated characters of W/Zr energetic fragments [J]. Materials and Design, 2015, 84: 72–78. DOI: 10.1016/j.matdes.2015.06.107.
    [41] XIONG W, ZHANG X F, TAN M T, et al. The energy release characteristics of shock-induced chemical reaction of Al/Ni composites [J]. The Journal of Physical Chemistry C, 2016, 120(43): 24551–24559. DOI: 10.1021/acs.jpcc.6b06530.
    [42] ZHANG S, LIU J X, YANG M, et al. Effects of multi-component co-addition on reaction characteristics and impact damage properties of reactive material [J]. Materials and Design, 2018, 153: 1–8. DOI: 10.1016/j.matdes.2018.04.077.
    [43] MASON B A, GROVEN L J, SON S F. The role of microstructure refinement on the impact ignition and combustion behavior of mechanically activated Ni/Al reactive composites [J]. Journal of Applied Physics, 2013, 114(11): 113501. DOI: 10.1063/1.4821236.
    [44] FENG S S, WANG C L, HUANG G Y. Experimental study on the reaction zone distribution of impact-induced reactive materials [J]. Propellants, Explosives, Pyrotechnics, 2017, 42(8): 896–905. DOI: 10.1002/prep.201600274.
    [45] EAKINS D E, THADHANI N N. Investigation of shock-induced reactions in a Ni+Al powder mixture [J]. AIP Conference Proceedings, 2006, 845(1): 1153–1156. DOI: 10.1063/1.2263528.
    [46] THADHAN N N. Shock-induced and shock-assisted solid-state chemical reactions in powder mixtures [J]. Journal of Applied Physics, 1994, 76(4): 2129–2138. DOI: 10.1063/1.357624.
    [47] NESTERENKO V F, MEYERS M A, CHEN H C, et al. Controlled high-rate localized shear in porous reactive media [J]. Applied Physics Letters, 1994, 65(24): 3069–3071. DOI: 10.1063/1.112509.
    [48] VANDERSALL K S, THADHANI N N. Investigation of“shock-induced”and“shock-assisted”chemical reactions in Mo+2Si powder mixtures [J]. Metallurgical and Materials Transactions A, 2003, 34(1): 15–23. DOI: 10.1007/s11661-003-0204-z.
    [49] YU L H, MEYERS M A. Shock synthesis and synthesis-assisted shock consolidation of suicides [J]. Journal of Materials Science, 1991, 26(3): 601–611. DOI: 10.1007/BF00588294.
    [50] DUNBAR E, THADHANI N N, GRAHAM R A. High-pressure shock activation and mixing of nickel-aluminium powder mixtures [J]. Journal of Materials Science, 1993, 28(11): 2903–2914. DOI: 10.1007/BF00354693.
    [51] THADHANI N N, GRAHAM R A, ROYAL T, et al. Shock-induced chemical reactions in titanium-silicon powder mixtures of different morphologies: time-resolved pressure measurements and materials analysis [J]. Journal of Applied Physics, 1997, 82(3): 1113–1128. DOI: 10.1063/1.365878.
    [52] ROYAL T E, NAMJOSHI S, THADHANI N N. Mechanistic processes influencing shock chemistry in powder mixtures of the Ti-Si, Ti-Al, and Ti-B systems [J]. Metallurgical and Materials Transactions A, 1996, 27(7): 1761–1771. DOI: 10.1007/BF02651925.
    [53] HORIE Y, GRAHAM R A, SIMONSEN I K. Synthesis of nickel aluminides under high-pressure shock loading [J]. Materials Letters, 1985, 3(9–10): 354–359. DOI: 10.1016/0167-577X(85)90075-8.
    [54] AKASHI T, SAWAOKA A, SAITO S, et al. Structural changes of boron nitride caused by multiple shock-compressions [J]. Japanese Journal of Applied Physics, 1976, 15(5): 891. DOI: 10.1143/JJAP.15.891.
    [55] BOSLOUGH M B. A thermochemical model for shock-induced reactions (heat detonations) in solids [J]. The Journal of Chemical Physics, 1990, 92(3): 1839–1848. DOI: 10.1063/1.458066.
    [56] MEYERS M A. Dynamic behaviour of materials [M]. New York: John Wiley & Sons, 1994. DOI: 10.1002/9780470172278.
    [57] BOLME C A, MCGRANE S D, MOORE D S, et al. Single shot measurements of laser driven shock waves using ultrafast dynamic ellipsometry [J]. Journal of Applied Physics, 2007, 102(3): 033513. DOI: 10.1063/1.2767376.
    [58] VANDERSALL K S, THADHANI N N. Time-resolved measurements of the shock-compression response of Mo+2Si elemental powder mixtures [J]. Journal of Applied Physics, 2003, 94(3): 1575–1583. DOI: 10.1063/1.1586968.
    [59] HUANG C M, CHEN J, BAI S X, et al. Enhancement of energy release performance of Al-Ni composites by adding CuO [J]. Journal of Alloys and Compounds, 2020, 835: 155271. DOI: 10.1016/j.jallcom.2020.155271.
    [60] EAKINS D E, THADHANI N N. Shock compression of reactive powder mixtures [J]. International Materials Reviews, 2009, 54(4): 181–213. DOI: 10.1179/174328009X461050.
    [61] GRAHAM R A. Issues in shock-induced solid state chemistry [R]. Albuquerque: Sandia National Lab, 1989.
    [62] YANO K, HORIE Y. A numerical study of shock-induced particle velocity dispersion in solid mixtures [J]. Journal of Applied Physics, 1998, 84(3): 1292–1298. DOI: 10.1063/1.368197.
    [63] TAMURA S, HORIE Y. Discrete meso-dynamic simulation of thermal explosion in shear bands [J]. Journal of Applied Physics, 1998, 84(7): 3574–3580. DOI: 10.1063/1.368532.
    [64] AUSTIN R A. Numerical simulation of the shock compression of microscale reactive particle systems [D]. Atlanta: Georgia Institute of Technology, 2005.
    [65] BOLKHOVITINOV L G, BATSANOV S S. Theory of solid-state detonation [J]. Combustion, Explosion, and Shock Waves, 2007, 43(2): 219–221. DOI: 10.1007/s10573-007-0030-5.
    [66] ZHANG X F, QIAO L, SHI A S, et al. A cold energy mixture theory for the equation of state in solid and porous metal mixtures [J]. Journal of Applied Physics, 2011, 110(1): 013506. DOI: 10.1063/1.3603018.
    [67] 张先锋, 赵晓宁, 乔良. 反应金属冲击反应过程的理论分析 [J]. 爆炸与冲击, 2010, 30(2): 145–151. DOI: 10.11883/1001-1455(2010)02-0145-07.

    ZHANG X F, ZHAO X N, QIAO L. Theory analysis on shock-induced chemical reaction of reactive metal [J]. Explosion and Shock Waves, 2010, 30(2): 145–151. DOI: 10.11883/1001-1455(2010)02-0145-07.
    [68] HORIE Y, KIPP M E. Modeling of shock-induced chemical reactions in powder mixtures [J]. Journal of Applied Physics, 1988, 63(12): 5718–5727. DOI: 10.1063/1.340309.
    [69] DO I P H, BENSON D J. Micromechanical modeling of shock-induced chemical reactions in heterogeneous multi-material powder mixtures [J]. International Journal of Plasticity, 2001, 17(4): 641–668. DOI: 10.1016/S0749-6419(00)00065-6.
    [70] BENSON D J. The calculation of the shock velocity-particle velocity relationship for a copper powder by direct numerical simulation [J]. Wave Motion, 1995, 21(1): 85–99. DOI: 10.1016/0165-2125(94)00044-6.
    [71] NIEH T G, LUO P, NELLIS W, et al. Dynamic compaction of aluminum nanocrystals [J]. Acta Materialia, 1996, 44(9): 3781–3788. DOI: 10.1016/1359-6454(96)83816-X.
    [72] AUSTIN R A, MCDOWELL D L, BENSON D J. Numerical simulation of shock wave propagation in spatially-resolved particle systems [J]. Modelling and Simulation in Materials Science and Engineering, 2006, 14(4): 537–561. DOI: 10.1088/ 0965-0393/14/4/001.
    [73] BENSON D J. An analysis by direct numerical simulation of the effects of particle morphology on the shock compaction of copper powder [J]. Modelling and Simulation in Materials Science and Engineering, 1994, 2(3A): 535–550. DOI: 10.1088/0965-0393/2/3A/008.
    [74] BAER M R, TROTT W M. Mesoscale studies of shock loaded tin sphere lattices [J]. AIP Conference Proceedings, 2004, 706(1): 517–520. DOI: 10.1063/1.1780290.
    [75] BAER M R. Modeling heterogeneous energetic materials at the mesoscale [J]. Thermochimica Acta, 2002, 384(1–2): 351–367. DOI: 10.1016/S0040-6031(01)00794-8.
    [76] BENSON D J, CONLEY P. Eulerian finite-element simulations of experimentally acquired HMX microstructures [J]. Modelling and Simulation in Materials Science and Engineering, 1999, 7(3): 333–354. DOI: 10.1088/0965-0393/7/3/304.
    [77] EAKINS D E, THADHANI N N. Discrete particle simulation of shock wave propagation in a Ni+Al powder mixture [J]. Journal of Applied Physics, 2007, 101(4): 043508. DOI: 10.1063/1.2431682.
    [78] EAKINS D E, THADHANI N N. Mesoscale simulation of the configuration-dependent shock-compression response of Ni+Al powder mixtures [J]. Acta Materialia, 2008, 56(7): 1496–1510. DOI: 10.1016/j.actamat.2007.12.009.
    [79] CHAWLA N, SIDHU R S, GANESH V V. Three-dimensional visualization and microstructure-based modeling of deformation in particle-reinforced composites [J]. Acta Materialia, 2006, 54(6): 1541–1548. DOI: 10.1016/j.actamat.2005.11.027.
    [80] SIDHU R S, CHAWLA N. Three-dimensional (3D) visualization and microstructure-based modeling of deformation in a Sn-rich solder [J]. Scripta Materialia, 2006, 54(9): 1627–1631. DOI: 10.1016/j.scriptamat.2006.01.013.
    [81] AYYAR A, CHAWLA N. Microstructure-based modeling of the influence of particle spatial distribution and fracture on crack growth in particle-reinforced composites [J]. Acta Materialia, 2007, 55(18): 6064–6073. DOI: 10.1016/j.actamat.2007.06.044.
    [82] ZHAI J, TOMAR V, ZHOU M. Micromechanical simulation of dynamic fracture using the cohesive finite element method [J]. Journal of Engineering Materials and Technology, 2004, 126(2): 179–191. DOI: 10.1115/1.1647127.
    [83] YANG Y, GOULD R D, HORIE Y, et al. Shock-induced chemical reactions in a Ni/Al powder mixture [J]. Applied Physics Letters, 1997, 70(25): 3365–3367. DOI: 10.1063/1.119172.
    [84] QIAO L, ZHANG X F, HE Y, et al. Multiscale modelling on the shock-induced chemical reactions of multifunctional energetic structural materials [J]. Journal of Applied Physics, 2013, 113(17): 173513. DOI: 10.1063/1.4803712.
    [85] 乔良. 多功能含能结构材料冲击反应与细观特性关联机制研究[D]. 南京: 南京理工大学, 2013.
    [86] REDING D J, HANAGUD S. Multiscale chemical reactions in reactive powder metal mixtures during shock compression [J]. Journal of Applied Physics, 2010, 105(2): 024912. DOI: 10.1063/1.2976313.
    [87] XIONG Y N, XIAO S F, DENG H Q, et al. Investigation of the shock-induced chemical reaction (SICR) in Ni+Al nanoparticle mixtures [J]. Physical Chemistry Chemical Physics, 2017, 27(19): 17607–17617. DOI: 10.1039/C7CP03176A.
  • 加载中
图(14)
计量
  • 文章访问数:  1101
  • HTML全文浏览量:  459
  • PDF下载量:  230
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-22
  • 修回日期:  2020-11-05
  • 网络出版日期:  2021-03-05
  • 刊出日期:  2021-03-10

目录

    /

    返回文章
    返回