碳纳米管/碳纤维增强复合材料层合板低速冲击响应和破坏的数值模拟

王敏 文鹤鸣

王敏, 文鹤鸣. 碳纳米管/碳纤维增强复合材料层合板低速冲击响应和破坏的数值模拟[J]. 爆炸与冲击, 2022, 42(3): 033102. doi: 10.11883/bzycj-2021-0050
引用本文: 王敏, 文鹤鸣. 碳纳米管/碳纤维增强复合材料层合板低速冲击响应和破坏的数值模拟[J]. 爆炸与冲击, 2022, 42(3): 033102. doi: 10.11883/bzycj-2021-0050
WANG Min, WEN Heming. Numerical simulations of response and failure of carbon nanotube/carbon fibre reinforced plastic laminates under impact loading[J]. Explosion And Shock Waves, 2022, 42(3): 033102. doi: 10.11883/bzycj-2021-0050
Citation: WANG Min, WEN Heming. Numerical simulations of response and failure of carbon nanotube/carbon fibre reinforced plastic laminates under impact loading[J]. Explosion And Shock Waves, 2022, 42(3): 033102. doi: 10.11883/bzycj-2021-0050

碳纳米管/碳纤维增强复合材料层合板低速冲击响应和破坏的数值模拟

doi: 10.11883/bzycj-2021-0050
详细信息
    作者简介:

    王 敏(1996- ),女,硕士研究生,wangmin9@mail.ustc.edu.cn

    通讯作者:

    文鹤鸣(1965- ),男,博士,教授,博士生导师,hmwen@ustc.edu.cn

  • 中图分类号: O347.3

Numerical simulations of response and failure of carbon nanotube/carbon fibre reinforced plastic laminates under impact loading

  • 摘要: 碳纳米管/碳纤维增强复合材料(carbon nanotube/carbon fibre reinforced plastic,CNT/CFRP)是一种多尺度复合材料,比传统CFRP有更好的综合性能和更广阔的应用前景。对CNT/CFRP在低速冲击下的响应和破坏进行了数值模拟研究。首先,基于先前的研究通过引入基体增韧因子、残余强度因子并改进损伤耦合方程,建立了新的FRP动态渐进损伤模型;然后,利用新建立的本构模型并结合黏结层损伤模型,对4种碳纳米管含量的增韧碳纤维增强树脂基复合材料层合板在5个能量下的冲击实验进行了数值模拟;最后,将模拟结果与文献中的相关实验结果进行了比较,并讨论了冲击速度的影响。结果表明:新建立的FRP本构模型能够预测CNT/CFRP层合板在低速冲击载荷作用下的响应、破坏过程和分层形貌,模拟得到的载荷-位移曲线和破坏形貌与实验吻合较好;冲击速度会影响CNT/CFRP层合板拉伸和压缩破坏的比例,相同的冲击能量下,更大的冲击速度会造成更多的拉伸破坏。
  • 图  1  损伤演化示意图

    Figure  1.  Schematic diagrams of damage evolution

    图  2  冲击载荷下 CFRP 层合板的有限元模型

    Figure  2.  Finite element model for CFRP laminates under impact loading

    图  3  CNT含量对CNT/FRP层间剪切强度的影响

    Figure  3.  Effect of CNT content on the intelaminar shear strength

    图  4  不同CNT含量黏结层模型的牵引力-位移关系

    Figure  4.  The traction-separation law in the cohesive element model with different CNT contents

    图  5  数值模拟的载荷-位移曲线与实验[11]的比较

    Figure  5.  Comparison of the force-displacement curves between numerical simulation and experiment[11]

    图  6  数值模拟的破坏形貌与实验[11]的比较

    Figure  6.  Comparison of the damage morphologies between numerical simulation and experiment[11]

    图  7  数值模拟的破坏历程

    Figure  7.  Damage histories obtained by numerical simulations

    图  8  冲击能量为15 J时不同MWCNTs含量CFRP层合板的分层形貌

    Figure  8.  Delaminations of CFRP laminatses with different MWCNTs content under the impact energy of 15 J

    图  9  冲击能量为120 J时不同MWCNTs含量CFRP层合板的分层形貌

    Figure  9.  Delaminations of CFRP laminates with different MWCNTs content under the impact energy of 120 J

    图  10  冲击能量为120 J时不同冲击速度对CNT/CFRP冲击载荷-位移曲线的影响

    Figure  10.  Effect of impact velocity on the impact load-displacement curve for CNT/CFRP under the impact energy of 120 J

    图  11  冲击能量为120 J时下不同冲击速度对CNT/CFRP损伤的影响

    Figure  11.  Effect of impact velocity on the damage of CNT/CFRP under the impact energy of 120 J

    表  1  等效位移和等效应力

    Table  1.   Equivalent displacement and equivalent stress

    j损伤模式δeq,jσeq,j
    1x方向的纤维拉/剪损伤$ {L_{\text{c}}}\sqrt {{{\left\langle {{\varepsilon _x}} \right\rangle }^2} + \gamma _{x{\textit{z}}}^2} $$\left. {L_{\text{c}}}\left( {{E_x}{{\left\langle {{\varepsilon _x}} \right\rangle }^2} + {G_{x{\textit{z}}}}\gamma _{x{\textit{z}}}^2} \right)\right/{\delta _{{\text{eq,1}}}} $
    2y方向的纤维拉/剪损伤$ {L_{\text{c}}}\sqrt {{{\left\langle {{\varepsilon _y}} \right\rangle }^2} + \gamma _{y{\textit{z}}}^2} $$\left. {L_{\text{c}}}\left( {{E_y}{{\left\langle {{\varepsilon _y}} \right\rangle }^2} + {G_{y{\textit{z}}}}\gamma _{y{\textit{z}}}^2} \right)\right/{\delta _{{\text{eq,2}}}} $
    3x方向的纤维压缩损伤$ {L_{\text{c}}}\left\langle {{\varepsilon '_x}} \right\rangle $$ {E_x}\left\langle {{\varepsilon '_x}} \right\rangle $
    4y方向的纤维压缩损伤$ {L_{\text{c}}}\left\langle {{\varepsilon '_y}} \right\rangle $$ {E_y}\left\langle {{\varepsilon '_y}} \right\rangle $
    5厚度方向的纤维压溃$ {L_{\text{c}}}\left\langle { - {\varepsilon _{\textit{z}}}} \right\rangle $$ {E_{\textit{z}}}\left\langle { - {\varepsilon _{\textit{z}}}} \right\rangle $
    6面内的基体剪切损伤$ {L_{\text{c}}}\sqrt {\gamma _{xy}^2} $$ {G_{xy}}\sqrt {\gamma _{xy}^2} $
    7厚度方向的基体拉剪损伤$ {L_{\text{c}}}\sqrt {{{\left\langle {{\varepsilon _{\textit{z}}}} \right\rangle }^2} + \gamma _{x{\textit{z}}}^2 + \gamma _{y{\textit{z}}}^2} $$\left. {L_{\text{c}}}\left( {{E_{\textit{z}}}{{\left\langle {{\varepsilon _{\textit{z}}}} \right\rangle }^2} + {G_{x{\textit{z}}}}\gamma _{x{\textit{z}}}^2 + {G_{y{\textit{z}}}}\gamma _{y{\textit{z}}}^2} \right)\right/{\delta _{{\text{eq,7}}}} $
    下载: 导出CSV

    表  2  CFRP单层板的材料参数

    Table  2.   Parameters for CFRP laminate

    $ {E_x} $/GPa$ {E_y} $/GPa$ {E_{\textit{z}}} $/GPa$ {\nu _{xy}} $$ {\nu _{y{\textit{z}}}} $$ {\nu _{x{\textit{z}}}} $$ {G_{xy}} $/GPa$ {G_{y{\textit{z}}}} $/GPa$ {G_{x{\textit{z}}}} $/GPa$ {S_{{\text{t}},x}} $,$ {S_{{\text{t,}}y}} $/MPa$ {S_{{\text{c,}}x}} $,$ {S_{{\text{c,}}y}} $/MPa
    68[12]68[12]10[12]0.22[12]0.49[12]0.49[12]5.0[12]4.5[12]4.5[12]420420[13]
    $ {S_{{\text{t,}}{\textit{z}}}} $/MPa$ {S_{{\text{c,}}{\textit{z}}}} $/MPa$ {S_{xy}} $/MPa$ {S_{y{\textit{z}}}} $/MPa$ {S_{x{\textit{z}}}} $/MPa$ {S_{{\text{sf}}}} $/MPaφ$ \delta _{{\text{eq,1}}}^{\text{f}} $,$ \delta _{{\text{eq,2}}}^{\text{f}} $/mm$ \delta _{{\text{eq,3}}}^{\text{f}} $,$ \delta _{{\text{eq,4}}}^{\text{f}} $/mm$ \delta _{{\text{eq,5}}}^{\text{f}} $/mm
    49.5[13]15098[14]4545300100.20.025[12]0.05[12]
    下载: 导出CSV

    表  3  CNT/CFRP材料参数

    Table  3.   Parameters for CNT/CFRP laminates

    w/%Sfrs,jɛx,limit, ɛy,limitɛexpnɛcrshɛdistor
    j=1~2j=3~5
    0 1.00.080.12.13.30.0012.0
    0.50.50.150.12.45.20.0015.0
    1.00.50.150.12.45.20.0015.0
    1.50.50.150.12.45.20.0015.0
    下载: 导出CSV

    表  4  黏结层单元参数

    Table  4.   Parameters for cohesive elements

    w/%$ t_{\rm{n}}^0 $/MPa$ t_{\rm{s}}^{{0}} $/MPa$ t_{\rm{t}}^{{0}} $/MPa$ {G}_{{\text{Ⅰ}}{\rm{C}}} $/(N·mm−1$ {G}_{{\text{Ⅱ}}{\rm C}} $/(N·mm−1$ {G}_{{\text{Ⅲ}}{{\rm{C}}}} $/(N·mm−1$ {K_{\rm{n}}},{K_{\rm{s}}},{K_{\rm{t}}} $/(MPa·mm−1
    03.3[22]7.0[22]7.0[22]0.33[22]0.8[22]0.8[22] 850[22]
    0.53.71257.87507.87500.417661.01251.0125850
    1.04.12508.75008.75000.515631.25001.2500850
    1.54.53759.62509.62500.623911.51251.5125850
    下载: 导出CSV
  • [1] TARFAOUI M, LAFDI K, EL MOUMEN A. Mechanical properties of carbon nanotubes based polymer composites [J]. Composites Part B:Engineering, 2016, 103: 113–121. DOI: 10.1016/j.compositesb.2016.08.016.
    [2] BISHT A, DASGUPTA K, LAHIRI D. Investigating the role of 3D network of carbon nanofillers in improving the mechanical properties of carbon fiber epoxy laminated composite [J]. Composites Part A:Applied Science and Manufacturing, 2019, 126: 105601. DOI: 10.1016/j.compositesa.2019.105601.
    [3] SAGER R J, KLEIN P J, LAGOUDAS D C, et al. Effect of carbon nanotubes on the interfacial shear strength of T650 carbon fiber in an epoxy matrix [J]. Composites Science and Technology, 2009, 69(7/8): 898−904. DOI: 10.1016/j.compscitech.2008.12.021.
    [4] CHA J, KIM J, RYU S, et al. Strengthening effect of melamine functionalized low-dimension carbon at fiber reinforced polymer composites and their interlaminar shear behavior [J]. Composites Part B: Engineering, 2019, 173: 106976. DOI: 10.1016/j.compositesb.2019.106976.
    [5] ZHANG Q J, WU J Q, GAO L, et al. Dispersion stability of functionalized MWCNT in the epoxy-amine system and its effects on mechanical and interfacial properties of carbon fiber composites [J]. Materials and Design, 2016, 94: 392–402. DOI: 10.1016/j.matdes.2016.01.062.
    [6] TARFAOUI M, EL MOUMEN A, LAFDI K. Progressive damage modeling in carbon fibers / carbon nanotubes reinforced polymer composites [J]. Composites Part B: Engineering, 2017, 112: 185–195. DOI: 10.1016/j.compositesb.2016.12.056.
    [7] XIN S H, WEN H M. Numerical study on the perforation of fiber reinforced plastic laminates struck by high velocity projectiles [J]. The Journal of Strain Analysis for Engineering Design, 2012, 47(7): 513–523. DOI: 10.1177/0309324712454650.
    [8] XIN S H, WEN H M. A progressive damage model for fiber reinforced plastic composites subjected to impact loading [J]. International Journal of Impact Engineering, 2015, 75: 40–52. DOI: 10.1016/j.ijimpeng.2014.07.014.
    [9] YEN C F. A ballistic material model for continuous-fiber reinforced composites [J]. International Journal of Impact Engineering, 2012, 46: 11–22. DOI: 10.1016/j.ijimpeng.2011.12.007.
    [10] 蒋振, 文鹤鸣. 粘结单元在模拟FRP层合板低速冲击响应中的应用 [J]. 爆炸与冲击, 2019, 39(4): 043202. DOI: 10.11883/bzycj-2017-0245.

    JIANG Z, WEN H M. Application of cohesive elements in modeling the low-velocity impact response and failure of fiber reinforced plastic laminates [J]. Explosion and Shock Waves, 2019, 39(4): 043202. DOI: 10.11883/bzycj-2017-0245.
    [11] SOLIMAN E M, SHEYKA M P, TAHA M R. Low-velocity impact of thin woven carbon fabric composites incorporating multi-walled carbon nanotubes [J]. International Journal of Impact Engineering, 2012, 47: 39–47. DOI: 10.1016/j.ijimpeng.2012.03.002.
    [12] VARAS D, ARTERO-GUERRERO J A, PERNAS-SÁNCHEZ J, et al. Analysis of high velocity impacts of steel cylinders on thin carbon/epoxy woven laminates [J]. Composite Structures, 2013, 95: 623–629. DOI: 10.1016/j.compstruct.2012.08.015.
    [13] NAIK N K, SEKHER Y C, MEDURI S. Damage in woven-fabric composites subjected to low-velocity impact [J]. Composites Science and Technology, 2000, 60(5): 731–744. DOI: 10.1016/S0266-3538(99)00183-9.
    [14] GÓMEZ-DEL RÍO T, ZAERA R, BARBERO E, et al. Damage in CFRPs due to low velocity impact at low temperature [J]. Composites Part B: Engineering, 2005, 36(1): 41–50. DOI: 10.1016/j.compositesb.2004.04.003.
    [15] BEHERA R P, RAWAT P, SINGH K K, et al. Fracture analysis and mechanical properties of three phased glass / epoxy laminates reinforced with multiwalled carbon nanotubes [J]. Journal of Science: Advanced Materials and Devices, 2019, 4(2): 299–309. DOI: 10.1016/j.jsamd.2019.03.003.
    [16] GAURAV A, SINGH K K. ILSS improvement of quasi-isotropic glass fiber reinforced epoxy laminate enhanced with arc discharged multi-walled carbon nanotubes [J]. Materials Today: Proceedings, 2018, 5(2): 8638–8644. DOI: 10.1016/j.matpr.2017.11.563.
    [17] RATHORE D K, PRUSTY R K, KUMAR D S, et al. Mechanical performance of CNT-filled glass fiber / epoxy composite in in-situ elevated temperature environments emphasizing the role of CNT content [J]. Composites Part A: Applied Science and Manufacturing, 2016, 84: 364–376. DOI: 10.1016/j.compositesa.2016.02.020.
    [18] BÖGER L, WICHMANN M H G, MEYER L O, et al. Load and health monitoring in glass fibre reinforced composites with an electrically conductive nanocomposite epoxy matrix [J]. Composites Science and Technology, 2008, 68(7/8): 1886−1894. DOI: 10.1016/j.compscitech.2008.01.001.
    [19] ZAHID S, NASIR M A, NAUMAN S, et al. Experimental analysis of ILSS of glass fibre reinforced thermoplastic and thermoset textile composites enhanced with multiwalled carbon nanotubes [J]. Journal of Mechanical Science and Technology, 2019, 33(1): 197–204. DOI: 10.1007/s12206-018-1219-0.
    [20] ZHANG T, CHEN J L, WANG K, et al. Improved interlaminar crack resistance of glass fiber / poly (phenylene sulfide) thermoplastic composites modified with multiwalled carbon nanotubes [J]. Polymer Composites, 2019, 40(11): 4186–4195. DOI: 10.1002/pc.25279.
    [21] KHURRAM A A, HUSSAIN R, AFZAL H, et al. Carbon nanotubes for enhanced interface of fiber metal laminate [J]. International Journal of Adhesion and Adhesives, 2018, 86: 29–34. DOI: 10.1016/j.ijadhadh.2018.08.008.
    [22] LIU Y J, JIANG Z, WEN H M. Predicting impact induced delamination of FRP laminates [J]. International Journal of Impact Engineering, 2020, 137: 103436. DOI: 10.1016/j.ijimpeng.2019.103436.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  580
  • HTML全文浏览量:  250
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-02
  • 修回日期:  2021-05-06
  • 网络出版日期:  2022-03-08
  • 刊出日期:  2022-04-07

目录

    /

    返回文章
    返回