Dynamic mechanical properties and constitutive relationship of selective laser melted Ti-6Al-4V alloy
-
摘要: 为了开展激光选区熔化(SLM)增材制造钛合金的动态力学性能研究,分别采用热模拟材料试验机、分离式霍普金森压杆装置对激光选区熔化钛合金在不同温度下进行了准静态和动态压缩实验,并基于实验结果拟合Johnson-Cook本构模型,同时对钛合金在高温、高应变率下的力学行为进行了有限元模拟。结果表明,相对于铸造或锻造钛合金,激光选区熔化钛合金具有更细小、均匀的组织,使其屈服强度有明显的提升,且表现出明显的应变率强化效应和热软化效应。有限元模拟结果与实验有着较高的重合度,进一步验证了本构参数的有效性,为扩大激光选区熔化技术及其产品的应用提供了理论基础。
-
关键词:
- 激光选区熔化 /
- Ti-6Al-4V合金 /
- 动态力学性能 /
- Johnson-Cook本构 /
- 有限元模拟
Abstract: Aiming at understanding the dynamic mechanical properties of titanium alloys additively manufactured by selective laser melting (SLM), quasi-static and dynamic impact experiments were carried out on selective laser melted Ti-6Al-4V alloy at different temperatures using thermal simulation material testing machine and SHPB device, respectively. Based on the experimental results, the parameters of Johnson-Cook constitutive model are fitted. Meanwhile, the mechanical behaviors of titanium alloy at high temperature and high strain rates were simulated by finite element method. The results show that the yield strength of selective laser melted Ti-6Al-4V alloy is enhanced significantly compared with those of wrought or forged counterparts, Moreover, it exhibits significant strain rate strengthening effect and thermal softening effect. The finite element simulation results are close to the experimental results and further validate the constitutive model parameters, which could provide a theoretical basis for expanding the application of selective laser melting technique and its products. -
表 1 其他文献Johnson-Cook本构参数与本文结果对比
Table 1. Comparison of the Johnson-Cook constitutive model parameters in references and this article
表 2 其他有限元模拟参数
Table 2. Other finite element simulation parameters
材料 密度/(kg·m−3) 杨氏模量/GPa 泊松比 线膨胀系数/℃−1 热导率/(W·m−1·℃−1) 比热/(J·kg−1·℃−1) Ti-6Al-4V 4500 114 0.34 8.6×10−6 7.955 612 18Ni 7800 190 0.3 − − − -
[1] SUN J F, YANG Y Q, WANG D. Mechanical properties of a Ti6Al4V porous structure produced by selective laser melting [J]. Materials & Design, 2013, 49: 545–552. DOI: 10.1016/j.matdes.2013.01.038. [2] TAN X P, KOK Y, TAN Y J, et al. Graded microstructure and mechanical properties of additive manufactured Ti-6Al-4V via electron beam melting [J]. Acta Materialia, 2015, 97: 1–16. DOI: 10.1016/j.actamat.2015.06.036. [3] LIU Y, XU H Z, ZHU L, et al. Investigation into the microstructure and dynamic compressive properties of selective laser melted Ti-6Al-4V alloy with different heating treatments [J]. Materials Science and Engineering: A, 2021, 805: 140561. DOI: 10.1016/j.msea.2020.140561. [4] WEN J J, LIU C W, YAO H P, et al. A nonlinear dynamic model and parameters identification method for predicting the shock pulse of rubber waveform generator [J]. International Journal of Impact Engineering, 2018, 120: 1–15. DOI: 10.1016/j.ijimpeng.2018.05.009. [5] BISWAS N, DING J L, BALLA V K, et al. Deformation and fracture behavior of laser processed dense and porous Ti6Al4V alloy under static and dynamic loading [J]. Materials Science and Engineering: A, 2012, 549: 213–221. DOI: 10.1016/j.msea.2012.04.036. [6] ZARETSKY E, STERN A, FRAGE N. Dynamic response of AlSi10Mg alloy fabricated by selective laser melting [J]. Materials Science and Engineering: A, 2017, 688: 364–370. DOI: 10.1016/j.msea.2017.02.004. [7] BAXTER C, CYR E, ODESHI A, et al. Constitutive models for the dynamic behaviour of direct metal laser sintered AlSi10Mg_200C under high strain rate shock loading [J]. Materials Science and Engineering: A, 2018, 731: 296–308. DOI: 10.1016/j.msea.2018.06.040. [8] SYED A K, AHMAD B, GUO H, et al. An experimental study of residual stress and direction-dependence of fatigue crack growth behaviour in as-built and stress-relieved selective-laser-melted Ti6Al4V [J]. Materials Science and Engineering: A, 2019, 755: 246–257. DOI: 10.1016/j.msea.2019.04.023. [9] SIMONELLI M. Microstructure evolution and mechanical properties of selective laser melted Ti-6Al-4V [D]. Loughborough: Loughborough University, 2014: 104–121. [10] YANG J J, YU H C, YIN J, et al. Formation and control of martensite in Ti-6Al-4V alloy produced by selective laser melting [J]. Materials & Design, 2016, 108: 308–318. DOI: 10.1016/j.matdes.2016.06.117. [11] ALAGHMANDFARD R, CHALASANI D, HADADZADEH A, et al. Dynamic compressive response of electron beam melted Ti-6Al-4V under elevated strain rates: microstructure and constitutive models [J]. Additive Manufacturing, 2020, 35: 101347. DOI: 10.1016/j.addma.2020.101347. [12] FADIDA R, RITTEL D, SHIRIZLY A. Dynamic mechanical behavior of additively manufactured Ti6Al4V with controlled voids [J]. Journal of Applied Mechanics, 2015, 82(4): 041004. DOI: 10.1115/1.4029745. [13] PARAMORE J D, BUTLER B G, DUNSTAN M K, et al. The role of microstructure and strain rate on the mechanical behavior of Ti-6Al-4V produced by powder metallurgy [J]. International Journal of Refractory Metals and Hard Materials, 2020, 92: 105268. DOI: 10.1016/j.ijrmhm.2020.105268. [14] AUSTIN D C, BEVAN M A, EAST D, et al. Microstructural investigation and impact testing of additive manufactured TI-6AL-4V [M]// IKHMAYIES S, LI B W, CARPENTER J S, et al. Characterization of Minerals, Metals, and Materials 2017. Cham: Springer International Publishing, 2017: 191−199. DOI: 10.1007/978-3-319-51382-9_21. [15] WAYMEL R F, CHEW H B, LAMBROS J. Loading orientation effects on the strength anisotropy of additively-manufactured Ti-6Al-4V alloys under dynamic compression [J]. Experimental Mechanics, 2019, 59(6): 829–841. DOI: 10.1007/s11340-019-00506-2. [16] LIU Y, PANG Z C, LI M, et al. Investigation into the dynamic mechanical properties of selective laser melted Ti-6Al-4V alloy at high strain rate tensile loading [J]. Materials Science and Engineering: A, 2019, 745: 440–449. DOI: 10.1016/j.msea.2019.01.010. [17] NUREL B, NAHMANY M, FRAGE N, et al. Split Hopkinson pressure bar tests for investigating dynamic properties of additively manufactured AlSi10Mg alloy by selective laser melting [J]. Additive Manufacturing, 2018, 22: 823–833. DOI: 10.1016/j.addma.2018.06.001. [18] QIN J G, CHEN R, WEN X J, et al. Mechanical behaviour of dual-phase high-strength steel under high strain rate tensile loading [J]. Materials Science and Engineering: A, 2013, 586: 62–70. DOI: 10.1016/j.msea.2013.07.091. [19] SUN J L, TRIMBY P W, YAN F K, et al. Shear banding in commercial pure titanium deformed by dynamic compression [J]. Acta Materialia, 2014, 79: 47–58. DOI: 10.1016/j.actamat.2014.07.011. [20] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9. [21] 李建光, 施琪, 曹结东. Johnson-Cook本构方程的参数标定 [J]. 兰州理工大学学报, 2012, 38(2): 164–167. DOI: 10.3969/j.issn.1673-5196.2012.02.038.LI J G, SHI Q, CAO J D. Parameters calibration for Johnson-Cook constitutive equation [J]. Journal of Lanzhou University of Technology, 2012, 38(2): 164–167. DOI: 10.3969/j.issn.1673-5196.2012.02.038. [22] TANG X H, REN M F, BU F Z, et al. Strain rate dependent behaviors of a hot isotropically processed Ti-6Al-4V: mechanisms and material model [J]. Journal of Mechanical Science and Technology, 2016, 30(2): 661–665. DOI: 10.1007/s12206-016-0120-y. [23] SEO S, MIN O, YANG H. Constitutive equation for Ti-6Al-4V at high temperatures measured using the SHPB technique [J]. International Journal of Impact Engineering, 2005, 31(6): 735–754. DOI: 10.1016/j.ijimpeng.2004.04.010. [24] 胡绪腾, 宋迎东. TC4钛合金三种动态本构模型的对比分析 [J]. 兵器材料科学与工程, 2013, 36(1): 32–36. DOI: 10.14024/j.cnki.1004-244x.2013.01.003.HU X T, SONG Y D. Contrastive analysis of three dynamic constitutive models for TC4 titanium alloy [J]. Ordnance Material Science and Engineering, 2013, 36(1): 32–36. DOI: 10.14024/j.cnki.1004-244x.2013.01.003. [25] 惠旭龙, 牟让科, 白春玉, 等. TC4钛合金动态力学性能及本构模型研究 [J]. 振动与冲击, 2016, 35(22): 161–168. DOI: 10.13465/j.cnki.jvs.2016.22.024.HUI X L, MU R K, BAI C Y, et al. Dynamic mechanical property and constitutive model for TC4 titanium alloy [J]. Journal of Vibration and Shock, 2016, 35(22): 161–168. DOI: 10.13465/j.cnki.jvs.2016.22.024. [26] KHAN A S, SUH Y S, KAZMI R. Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys [J]. International Journal of Plasticity, 2004, 20(12): 2233–2248. DOI: 10.1016/j.ijplas.2003.06.005. [27] LEE W S, LIN C F. High-temperature deformation behaviour of Ti6Al4V alloy evaluated by high strain-rate compression tests [J]. Journal of Materials Processing Technology, 1998, 75(1): 127–136. DOI: 10.1016/S0924-0136(97)00302-6. [28] MOHAMMADHOSSEINI A, MASOOD S H, FRASER D, et al. Dynamic compressive behaviour of Ti-6Al-4V alloy processed by electron beam melting under high strain rate loading [J]. Advances in Manufacturing, 2015, 3(3): 232–243. DOI: 10.1007/s40436-015-0119-0. [29] TAO P, ZHONG J W, LI H X, et al. Microstructure, mechanical properties, and constitutive models for Ti-6Al-4V alloy fabricated by selective laser melting (SLM) [J]. Metals, 2019, 9(4): 447. DOI: 10.3390/met9040447. [30] VILLA M, PANTLEON K, REICH M, et al. Kinetics of anomalous multi-step formation of lath martensite in steel [J]. Acta Materialia, 2014, 80: 468–477. DOI: 10.1016/j.actamat.2014.08.031.