预张力纤维织物超高速碰撞热-力学特性分析

徐铧东 于东 王玉林 石景富 刘蕾 宋迪 苗常青

徐铧东, 于东, 王玉林, 石景富, 刘蕾, 宋迪, 苗常青. 预张力纤维织物超高速碰撞热-力学特性分析[J]. 爆炸与冲击, 2022, 42(5): 053301. doi: 10.11883/bzycj-2021-0307
引用本文: 徐铧东, 于东, 王玉林, 石景富, 刘蕾, 宋迪, 苗常青. 预张力纤维织物超高速碰撞热-力学特性分析[J]. 爆炸与冲击, 2022, 42(5): 053301. doi: 10.11883/bzycj-2021-0307
XU Huadong, YU Dong, WANG Yulin, SHI Jingfu, LIU Lei, SONG Di, MIAO Changqing. Thermo-mechanical characteristics of pre-tensioned fiber fabrics subjected to hypervelocity impact[J]. Explosion And Shock Waves, 2022, 42(5): 053301. doi: 10.11883/bzycj-2021-0307
Citation: XU Huadong, YU Dong, WANG Yulin, SHI Jingfu, LIU Lei, SONG Di, MIAO Changqing. Thermo-mechanical characteristics of pre-tensioned fiber fabrics subjected to hypervelocity impact[J]. Explosion And Shock Waves, 2022, 42(5): 053301. doi: 10.11883/bzycj-2021-0307

预张力纤维织物超高速碰撞热-力学特性分析

doi: 10.11883/bzycj-2021-0307
基金项目: 载人航天预先研究专项(040101);四川省科技计划(省院省校合作项目)(2020YFSY0015)
详细信息
    作者简介:

    徐铧东(1994- ),男,博士研究生,xuhuadong@hit.edu.cn

    通讯作者:

    苗常青(1972- ),男,博士,教授,miaocq@hit.edu.cn

  • 中图分类号: O347; V423

Thermo-mechanical characteristics of pre-tensioned fiber fabrics subjected to hypervelocity impact

  • 摘要: 高性能纤维织物承力层承担充气舱的内压载荷,并为充气舱提供空间碎片防护。充气舱内压载荷将导致纤维织物承力层产生预张力,并对纤维织物的空间碎片超高速碰撞特性产生显著影响,从而影响其空间碎片防护性能。为分析预张力对纤维织物超高速碰撞过程中热-力学特性的影响,采用Johnson-Cook强度模型和Mie-Grüneisen状态方程建立了纤维材料热-力耦合材料模型,利用有限元法-光滑粒子流体动力学耦合算法对纤维织物的纱线编织结构进行离散建模,并通过施加张力载荷实现纤维织物靶板的预拉伸,进而建立了预张力纤维织物超高速碰撞数值模型,分析并得到了预张力作用下纤维织物超高速碰撞热-力学特性及空间碎片防护性能。结果表明:在弹丸超高速碰撞下,随着预张力的提高,纤维织物穿孔面积增大,碎片云扩散角减小,弹丸动能吸收率降低,碰撞区域温度降低。预张力的存在显著降低了纤维织物的空间碎片防护性能。
  • 图  1  纱线几何结构

    Figure  1.  Yarn geometry

    图  2  纤维织物单胞模型

    Figure  2.  A unit cell model for fiber fabric

    图  3  纱线截面单元数量

    Figure  3.  The number of the elements in the yarn section

    图  4  弹体和单层纤维织物之间的超高速碰撞数值模型

    Figure  4.  A numerical model for hypervelocity impact between a projectile and a one-layer fabric

    图  5  不同织物单元规模下的弹丸动能变化历程曲线

    Figure  5.  Kinetic energy-time curves of the projectiles with different element numbers in the yarn section

    图  6  纤维织物超高速碰撞数值模型

    Figure  6.  Numerical model for impact between fabric and projectile

    图  7  充气舱

    Figure  7.  An inflatable capsule

    图  8  纤维织物承力层预张力随舱内压的变化曲线

    Figure  8.  Variation of the fabric pre-tension with the pressure in the inflatable capsule

    图  9  预张力不同的纤维织物在弹丸超高速碰撞下的应力云图和穿孔形貌(t=4.5 μs)

    Figure  9.  Stress nephograms and perforation morphologies of fiber fabrics with different pre-tensions under hypervelocity-projectile impact (t=4.5 μs)

    图  10  在弹丸碰撞作用下,不同预张力纤维织物的穿孔面积

    Figure  10.  Perforated areas in the fiber fabrics with different pre-tensions under hypervelocity-projectile impact

    图  11  预张力为500 MPa的纤维织物与弹丸的超高速碰撞过程

    Figure  11.  Hypervelocity impact process between a fiber fabric with the pre-tension of 500 MPa and a projectile

    图  12  碎片云扩散角

    Figure  12.  Debris cloud expansion angle

    图  13  碎片云扩散角随预张力变化曲线

    Figure  13.  Debris cloud expansion anglesunder different pre-tensions

    图  14  不同预张力状态下织物的弹丸动能吸收率

    Figure  14.  Projectile kinetic energy absorption ratios by fiber fabrics with different pretensions

    图  15  织物穿孔区温度分布

    Figure  15.  Temperature distribution in the fabric perforation zone

    图  16  温度表征点

    Figure  16.  Temperature characterization elements

    图  17  不同表征点的温度随时间的变化曲线

    Figure  17.  Variation of the temperatures with time at different characterization points

    图  18  不同表征点的最高温度随其与碰撞中点距离的变化曲线

    Figure  18.  Variation of the maximum temperatures at different characterization points with their distances from the impact center

    图  19  不同预张力下表征点Ele-1的最高温度变化曲线

    Figure  19.  Variation of the maximum temperature at characterization point Ele-1 with pre-tension.

    表  1  不同应变率下Kevlar 纤维束拉伸强度[19]

    Table  1.   Tensile strength of Kevlar fiber bundle at different strain rates[19]

    $\dot \varepsilon $/s−1$\sigma $/GPa $\dot \varepsilon $/s−1$\sigma $/GPa
    0.0012.34 1402.94
    0.012.47 4403.02
    13503.08
    下载: 导出CSV

    表  2  Johnson-Cook材料模型参数[19-21]

    Table  2.   Material parameters of the Johnson-Cook model[19-21]

    材料G/MPaA/MPaB/MPanCmTr/KTm/Kcp/(J·kg−1·K−1)
    2024 铝合金274753696840.730.00831.7273775875
    芳纶纤维25740234060.7910.006231273700142
    下载: 导出CSV

    表  3  Mie-Grüneisen状态方程参数[19-21]

    Table  3.   Parameters of the Mie-Grüneisen equation of state[19-21]

    材料Γ$\rho $/(g·cm−3)C0/(m·s−1)S1
    2024铝合金2.02.785 3281.338
    芳纶纤维0.769 21.455 3711.0
    下载: 导出CSV
  • [1] BUSLOV E P, KOMAROV I S, SELIVANOV V V, et al. Protection of inflatable modules of orbital stations against impacts of particles of space debris [J]. Acta Astronautica, 2019, 163: 54–61. DOI: 10.1016/j.actaastro.2019.04.046.
    [2] CHRISTIANSEN E L, KERR J H, DE LA FUENTE H M, et al. Flexible and deployable meteoroid/debris shielding for spacecraft [J]. International Journal of Impact Engineering, 1999, 23(1): 125–136. DOI: 10.1016/S0734-743X(99)00068-8.
    [3] SEEDHOUSE E. Bigelow aerospace: colonizing space one module at a time [M]. Cham, Switzerland: Springer, 2015: 26−39. DOI: 10.1007/978-3-319-05197-0.
    [4] 苗常青, 徐铧东, 靳广焓, 等. 纤维编织材料超高速撞击特性实验研究 [J]. 高压物理学报, 2019, 33(2): 024203. DOI: 10.11858/gywlxb.20180654.

    MIAO C Q, XU H D, JIN G H, et al. Experimental study of hypervelocity impact characteristics for fiber fabric materials [J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 024203. DOI: 10.11858/gywlxb.20180654.
    [5] KIM Y, CHOI C, KUMAR S K S, et al. Hypervelocity impact on flexible curable composites and pure fabric layer bumpers for inflatable space structures [J]. Composite Structures, 2017, 176: 1061–1072. DOI: 10.1016/j.compstruct.2017.06.035.
    [6] TANAKA M, MORITAKA Y, AKAHOSHI Y, et al. Development of a lightweight space debris shield using high strength fibers [J]. International Journal of Impact Engineering, 2001, 26(1): 761–772. DOI: 10.1016/S0734-743X(01)00127-0.
    [7] 苗常青, 杜明俊, 黄磊, 等. 空间碎片柔性防护结构超高速撞击试验研究 [J]. 载人航天, 2017, 23(2): 173–176,227. DOI: 10.3969/j.issn.1674-5825.2017.02.006.

    MIAO C Q, DU M J, HUANG L, et al. Experimental research on hypervelocity impact characteristics of flexible anti-debris multi-shields structure [J]. Manned Spaceflight, 2017, 23(2): 173–176,227. DOI: 10.3969/j.issn.1674-5825.2017.02.006.
    [8] RUDOLPH M, SCHÄFER F, DESTEFANIS R, et al. Fragmentation of hypervelocity aluminum projectiles on fabrics [J]. Acta Astronautica, 2012, 76: 42–50. DOI: 10.1016/j.actaastro.2012.02.002.
    [9] FAHRENTHOLD E P. Computational design of metal-fabric orbital debris shielding [J]. Journal of Spacecraft and Rockets, 2017, 54(5): 1060–1067. DOI: 10.2514/1.A33736.
    [10] 赵士操, 宋振飞, 赵晓平, 等. 基于SPH方法的纤维材料超高速碰撞模拟 [J]. 爆炸与冲击, 2013, 33(S1): 8–15.

    ZHAO S C, SONG Z F, ZHAO X P, et al. Simulation of fiber composites under HVI based on SPH [J]. Explosion and Shock Waves, 2013, 33(S1): 8–15.
    [11] ZHAO S C, SONG Z F, ESPINOSA H D. Modelling and analyses of fiber fabric and fabric-reinforced polymers under hypervelocity impact using smooth particle hydrodynamics [J]. International Journal of Impact Engineering, 2020, 144: 103586. DOI: 10.1016/j.ijimpeng.2020.103586.
    [12] 管公顺, 蒲东东, 哈跃, 等. 不同环境温度下铝球弹丸高速撞击编织物防护屏试验研究 [J]. 机械工程学报, 2015, 51(3): 66–72. DOI: 10.3901/JME.2015.03.066.

    GUAN G S, PU D D, HA Y, et al. Experimental investigation of woven bumper shield impacted by a high-velocity aluminum sphere at different ambient temperature [J]. Journal of Mechanical Engineering, 2015, 51(3): 66–72. DOI: 10.3901/JME.2015.03.066.
    [13] CHA J H, KIM Y, KUMAR S K S, et al. Ultra-high-molecular-weight polyethylene as a hypervelocity impact shielding material for space structures [J]. Acta Astronautica, 2020, 168: 182–190. DOI: 10.1016/j.actaastro.2019.12.008.
    [14] 林健宇, 罗斌强, 徐名扬, 等. 铝弹丸超高速撞击防护结构的研究进展 [J]. 高压物理学报, 2019, 33(3): 030112. DOI: 10.11858/gywlxb.20190774.

    LIN J Y, LUO B Q, XU M Y, et al. Progress of aluminum projectile impacting on plate with hypervelocity [J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030112. DOI: 10.11858/gywlxb.20190774.
    [15] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
    [16] RICE M H, MCQUEEN R G, WALSH J M. Compression of solids by strong shock waves [J]. Solid State Physics, 1958, 6: 1–63. DOI: 10.1016/S0081-1947(08)60724-9.
    [17] HEBERLING T, TERRONES G, WESELOH W. Hydrocode simulations of a hypervelocity impact experiment over a range of velocities [J]. International Journal of Impact Engineering, 2018, 122: 1–9. DOI: 10.1016/j.ijimpeng.2018.07.019.
    [18] WANG Y, XIA Y M. Experimental and theoretical study on the strain rate and temperature dependence of mechanical behaviour of Kevlar fibre [J]. Composites Part A: Applied Science and Manufacturing, 1999, 30(11): 1251–1257. DOI: 10.1016/S1359-835X(99)00035-4.
    [19] WANG Y, XIA Y M. The effects of strain rate on the mechanical behaviour of Kevlar fibre bundles: an experimental and theoretical study [J]. Composites Part A: Applied Science and Manufacturing, 1998, 29(11): 1411–1415. DOI: 10.1016/S1359-835X(98)00038-4.
    [20] SHIMEK M E, FAHRENTHOLD E P. Impact dynamics simulation for multilayer fabrics of various weaves [J]. AIAA Journal, 2015, 53(7): 1793–1811. DOI: 10.2514/1.J053504.
    [21] BUYUK M, KURTARAN H, MARZOUGUI D, et al. Automated design of threats and shields under hypervelocity impacts by using successive optimization methodology [J]. International Journal of Impact Engineering, 2008, 35(12): 1449−1458. DOI: 10.1016/j.ijimpeng.2008.07.057.
    [22] JOHNSON G R, STRYK R A. Conversion of 3D distorted elements into meshless particles during dynamic deformation [J]. International Journal of Impact Engineering, 2003, 28(9): 947–966. DOI: 10.1016/S0734-743X(03)00012-5.
    [23] 胡德安, 韩旭, 肖毅华, 等. 光滑粒子法及其与有限元耦合算法的研究进展 [J]. 力学学报, 2013, 45(5): 639–652. DOI: 10.6052/0459-1879-13-092.

    HU D A, HAN X, XIAO Y H, et al. Research developments of smoothed particle hydrodynamics method and its coupling with finite element method [J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5): 639–652. DOI: 10.6052/0459-1879-13-092.
    [24] 张志春, 强洪夫, 高巍然. 一种新型SPH-FEM耦合算法及其在冲击动力学问题中的应用 [J]. 爆炸与冲击, 2011, 31(3): 243–249. DOI: 10.11883/1001-1455(2011)03-0243-07.

    ZHANG Z C, QIANG H F, GAO W R. A new coupled SPH-FEM algorithm and its application to impact dynamics [J]. Explosion and Shock Waves, 2011, 31(3): 243–249. DOI: 10.11883/1001-1455(2011)03-0243-07.
    [25] HE Q G, CHEN X W, CHEN J F. Finite element-smoothed particle hydrodynamics adaptive method in simulating debris cloud [J]. Acta Astronautica, 2020, 175: 99–117. DOI: 10.1016/j.actaastro.2020.05.056.
    [26] 徐铧东, 王玉林, 刘蕾, 等. 纤维织物FEM-SPH耦合单胞模型及超高速碰撞特性 [J]. 复合材料学报, 2021, 38(9): 3131–3140. DOI: 10.13801/j.cnki.fhclxb.20201231.001.

    XU H D, WANG Y L, LIU L, et al. A fiber fabric unit-cell model based on FEM-SPH coupling algorithm and application on analyses of hypervelocity impact [J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3131–3140. DOI: 10.13801/j.cnki.fhclxb.20201231.001.
    [27] GIANNAROS E, KOTZAKOLIOS A, SOTIRIADIS G, et al. On fabric materials response subjected to ballistic impact using meso-scale modeling: numerical simulation and experimental validation [J]. Composite Structures, 2018, 204: 745–754. DOI: 10.1016/j.compstruct.2018.07.090.
    [28] 韩雅菲, 唐恩凌, 郭凯, 等. 超高速碰撞2A12铝板产生的热辐射演化特征实验研究 [J]. 发光学报, 2019, 40(3): 374–381. DOI: 10.3788/fgxb20194003.0374.

    HAN Y F, TANG E L, GUO K, et al. Experimental research on evolutionary characteristics of thermal radiation generated by hypervelocity impacting on 2A12 aluminum plate [J]. Chinese Journal of Luminescence, 2019, 40(3): 374–381. DOI: 10.3788/fgxb20194003.0374.
    [29] HAN Y F, TANG E L, HE L P, et al. Evolutionary characteristics of thermal radiation induced by 2A12 aluminum plate under hypervelocity impact loading [J]. International Journal of Impact Engineering, 2019, 125: 173–179. DOI: 10.1016/j.ijimpeng.2018.11.013.
  • 加载中
图(19) / 表(3)
计量
  • 文章访问数:  382
  • HTML全文浏览量:  197
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-20
  • 修回日期:  2021-11-01
  • 网络出版日期:  2022-04-06
  • 刊出日期:  2022-05-27

目录

    /

    返回文章
    返回