混凝土类材料动态压缩强度在多维应力状态下的应变率效应

刘锋 李庆明

刘锋, 李庆明. 混凝土类材料动态压缩强度在多维应力状态下的应变率效应[J]. 爆炸与冲击, 2022, 42(9): 091408. doi: 10.11883/bzycj-2022-0037
引用本文: 刘锋, 李庆明. 混凝土类材料动态压缩强度在多维应力状态下的应变率效应[J]. 爆炸与冲击, 2022, 42(9): 091408. doi: 10.11883/bzycj-2022-0037
LIU Feng, LI Qingming. Stain-rate effects on the dynamic compressive strength of concrete-like materials under multiple stress state[J]. Explosion And Shock Waves, 2022, 42(9): 091408. doi: 10.11883/bzycj-2022-0037
Citation: LIU Feng, LI Qingming. Stain-rate effects on the dynamic compressive strength of concrete-like materials under multiple stress state[J]. Explosion And Shock Waves, 2022, 42(9): 091408. doi: 10.11883/bzycj-2022-0037

混凝土类材料动态压缩强度在多维应力状态下的应变率效应

doi: 10.11883/bzycj-2022-0037
基金项目: 国家自然科学基金(11272060,52078283,12172198)
详细信息
    作者简介:

    刘 锋(1977- ),男,博士,副教授,feng.liu@sdust.edu.cn

    通讯作者:

    李庆明(1962- ),男,博士,教授,博士生导师,qingming.li@manchester.ac.uk

  • 中图分类号: O347.3

Stain-rate effects on the dynamic compressive strength of concrete-like materials under multiple stress state

  • 摘要: 对混凝土类材料动态压缩应变率效应研究的发展及问题进行了概述,对比不同应力状态下混凝土类材料动态压缩应变率效应的表现特征,揭示了不同加载路径下实测动态强度提高系数的显著差异。研究表明,在高应变率下,基于初始一维应力加载路径的试件将因横向惯性效应导致的侧向围压而演化至多维应力状态,传统霍普金森杆技术无法获得高应变率下基于真实一维应力路径的动态强度提高系数,在强度模型中直接应用实测数据将过高估计材料的动态强度。鉴于应变率效应的加载路径依赖性,将仅包含应变率的强度提高系数模型扩展至同时计及应变率和应力状态的多维应力状态模型,并结合Drucker-Prager准则在强度模型中给予了实现。针对具有自由和约束边界试件开展的数值霍普金森杆实验表明,多维应力状态下的应变率效应模型可以考虑应变率效应随应力状态改变的特点,从而准确预测该类材料的动态压缩强度。研究结果可为正确应用霍普金森杆技术确定脆性材料的动态压缩强度提供参考。
  • 图  1  一维应力状态下$ \gamma $$ \dot \varepsilon $之间的关系

    Figure  1.  $ \gamma $ versus $ \dot \varepsilon $ under 1D-stress state

    图  2  应力状态随应变率提高的演化过程[23]

    Figure  2.  Evolution of stress state with the increase of strain-rate [23]

    图  3  一维应变路径下花岗岩准静态和动态强度[10]

    Figure  3.  Quasi-static and shock strength of Granite under 1D-strain path [10]

    图  4  一维应变状态下$ \gamma $$ \dot \varepsilon $之间的关系[10, 42]

    Figure  4.  $ \gamma $ versus $ \dot \varepsilon $ under the 1D-strain state[10, 42]

    图  5  不同围压状态下动态强度提高系数与应变率之间的关系[44,47]

    Figure  5.  Dynamic increase factor versus strain rate under the given confining pressure [44, 47]

    图  6  混凝土类材料在多维应力状态下的动态压缩强度提高系数

    Figure  6.  The multi-axial dynamic increase factor model of strain-rate effect on compressive strength of concrete-like material

    图  7  已有材料模型对动态强度提高系数的修正

    Figure  7.  The correction on the dynamic increase factor in existed material models

    图  8  不同加载路径下数值霍普金森杆实验示意图

    Figure  8.  The illustration of NSHPB test setup for different loading path

    图  9  应变率282 s−1加载下试件应力分量与轴向应变的关系曲线

    Figure  9.  The stress components versus axial strain at strain-rate of 282 s−1

    图  10  试件应力三轴系数云图

    Figure  10.  The contour of stress triaxiality within the specimen

    图  11  $ \gamma $$ \eta $随应变率提高的演化趋势

    Figure  11.  The evolution of $ \gamma $and $ \eta $ with the increase of $ \dot \varepsilon $

    图  12  基于不同模型的数值霍普金森杆实验预测结果及与实验数据的对比

    Figure  12.  The predicated dynamic increase factor based on different models and comparison with test data

    图  13  试件准静态状态方程和偏应力强度[42]

    Figure  13.  The quasi-static EoS and deviatoric strength of sample[42]

    图  14  数值霍普金森杆结果与实验数据的对比

    Figure  14.  The comparison between NSHPB results and test data

    图  15  试件在环向约束下数值霍普金森杆实验示意图

    Figure  15.  Illustration of NSHPB for sample with confinement

    图  16  准静态围压实验测定的试件状态方程和偏应力强度[44]

    Figure  16.  The measured quasi-static equation of state and deviatoric strength of sample [44]

    图  17  数值霍普金森杆实验预测的典型变量演化过程

    Figure  17.  The evolution of typical variables predicated in a NSHPB test

    图  18  数值霍普金森杆预测结果及与实验数据的对比

    Figure  18.  The predication results in NSHPB test and comparison with test data

    表  1  数值霍普金森杆实验中装置、试件的尺寸和材料参数

    Table  1.   The dimension and material parameters in NSHPB test

    材料参数一维应力一维应变多维应力
    Zhang [17]Al-Salloum[53]Brace [10]Piotrawska [44]
    试件直径/mm377318.540
    试件密度/(kg∙m−3)2116200026502278
    厚径比0.50.521.25
    准静态强度/MPa51.063
    弹性模量/GPa17.220
    泊松比$ \nu $0.190.20.20.2
    摩擦角/(°)50[15]50[15]50[15]50[15]
    膨胀角/(°)50[15]50[15]50[15]50[15]
    霍普金森杆直径/mm37753780
    霍普金森杆材料密度/(kg∙m−3)7850785078507850
    霍普金森杆弹性模量/GPa200200200200
    下载: 导出CSV
  • [1] ABRAMS D A. Effect of rate of application of load on the compressive strength of concrete [J]. American Society for Testing and Materials Journal, 1917, 17(2): 364–377.
    [2] BISCHOFF P H, PERRY S H. Compressive behaviour of concrete at high strain rates [J]. Materials and Structures, 1991, 24(6): 425–450. DOI: 10.1007/BF02472016.
    [3] 胡时胜, 王礼立, 宋力, 等. Hopkinson压杆技术在中国的发展回顾 [J]. 爆炸与冲击, 2014, 34(6): 641–657. DOI: 10.11883/1001-1455(2014)06-0641-17.

    HU S S, WANG L L, SONG L, et al. Review of the development of Hopkinson pressure bar technique in China [J]. Explosion and Shock Waves, 2014, 34(6): 641–657. DOI: 10.11883/1001-1455(2014)06-0641-17.
    [4] FIELD J E, WALLEY S M, PROUD W G, et al. Review of experimental techniques for high rate deformation and shock studies [J]. International Journal of Impact Engineering, 2004, 30(7): 725–775. DOI: 10.1016/j.ijimpeng.2004.03.005.
    [5] LS-DYNA Support. LS-DYNA user manual R10.0-Vol I [EB/OL]. 2021-09-15. https://www.dyansupport.com/manuals/ls-dyna-manuals/ls-dyna-manual-r10.0-vol-i/view.
    [6] Century Dynamics. AUTODYN theory manual (revision 4.3) [M]. Concord: Century Dynamics, Inc., 2005.
    [7] Comite Euro-International du Beton. CEB-FIP model code 1990 [M]. Trowbridge, Wiltshire, UK: Redwood Books, 1993.
    [8] TEDESCO J W, ROSS C A. Strain-rate-dependent constitutive equations for concrete [J]. Journal of Pressure Vessel Technology, 1998, 120(4): 398–405. DOI: 10.1115/1.2842350.
    [9] GREEN S J, PERKINS R D. Uniaxial compression test at strain rates from 10−4/s to 104/s on three geologic materials [R]. DASA-2199, Final Rep, 1969: 44.
    [10] BRACE W F, JONES A H. Comparison of uniaxial deformation in shock and static loading of three rocks [J]. Journal of Geophysical Research, 1971, 76(20): 4913–4921. DOI: 10.1029/JB076i020p04913.
    [11] JANACH W. The role of bulking in brittle failure of rocks under rapid compression [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1976, 13(6): 177–186. DOI: 10.1016/0148-9062(76)91284-5.
    [12] BISCHOFF P H, PERRY S H. Impact behavior of plain concrete loaded in uniaxial compression [J]. Journal of Engineering Mechanics, 1995, 121(6): 685–693. DOI: 10.1061/(ASCE)0733-9399(1995)121:6(685.
    [13] DONZÉ F V, MAGNIER S A, DAUDEVILLE L, et al. Numerical study of compressive behavior of concrete at high strain rates [J]. Journal of Engineering Mechanics, 1999, 125(10): 1154–1163. DOI: 10.1061/(ASCE)0733-9399(1999)125:10(1154.
    [14] GROTE D L, PARK S W, ZHOU M. Dynamic behavior of concrete at high strain rates and pressures: Ⅰ. Experimental characterization [J]. International Journal of Impact Engineering, 2001, 25(9): 869–886. DOI: 10.1016/S0734-743X(01)00020-3.
    [15] LI Q M, MENG H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test [J]. International Journal of Solids and Structures, 2003, 40(2): 343–360. DOI: 10.1016/S0020-7683(02)00526-7.
    [16] LI Q M, LU Y B, MENG H. Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests. Part Ⅱ: numerical simulations [J]. International Journal of Impact Engineering, 2009, 36(12): 1335–1345. DOI: 10.1016/j.ijimpeng.2009.04.010.
    [17] ZHANG M, WU H J, LI Q M, et al. Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests. Part Ⅰ: experiments [J]. International Journal of Impact Engineering, 2009, 36(12): 1327–1334. DOI: 10.1016/j.ijimpeng.2009.04.009.
    [18] ZHANG M, LI Q M, HUANG F L, et al. Inertia-induced radial confinement in an elastic tubular specimen subjected to axial strain acceleration [J]. International Journal of Impact Engineering, 2010, 37(4): 459–464. DOI: 10.1016/j.ijimpeng.2009.09.009.
    [19] LU Y B, LI Q M. Appraisal of pulse-shaping technique in split Hopkinson pressure bar tests for brittle materials [J]. International Journal of Protective Structures, 2010, 1(3): 363–390. DOI: 10.1260/2041-4196.1.3.363.
    [20] LU Y B, LI Q M, MA G W. Numerical investigation of the dynamic compressive strength of rocks based on split Hopkinson pressure bar tests [J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(5): 829–838. DOI: 10.1016/j.ijrmms.2010.03.013.
    [21] LU Y B, LI Q M. A correction methodology to determine the strain-rate effect on the compressive strength of brittle materials based on SHPB testing [J]. International Journal of Protective Structures, 2011, 2(1): 127–138. DOI: 10.1260/2041-4196.2.1.127.
    [22] FLORES-JOHNSON E A, LI Q M. Structural effects on compressive strength enhancement of concrete-like materials in a split Hopkinson pressure bar test [J]. International Journal of Impact Engineering, 2017, 109: 408–418. DOI: 10.1016/j.ijimpeng.2017.08.003.
    [23] LIU F, LI Q M. Strain-rate effect on the compressive strength of brittle materials and its implementation into material strength model [J]. International Journal of Impact Engineering, 2019, 130: 113–123. DOI: 10.1016/j.ijimpeng.2019.04.006.
    [24] ZHOU X Q, HAO H. Modelling of compressive behaviour of concrete-like materials at high strain rate [J]. International Journal of Solids and Structures, 2008, 45(17): 4648–4661. DOI: 10.1016/j.ijsolstr.2008.04.002.
    [25] COTSOVOS D M, PAVLOVIĆ M N. Numerical investigation of concrete subjected to compressive impact loading. Part 1: a fundamental explanation for the apparent strength gain at high loading rates [J]. Computers & Structures, 2008, 86(1/2): 145–163. DOI: 10.1016/j.compstruc.2007.05.014.
    [26] KIM D J, SIRIJAROONCHAI K, EL-TAWIL S, et al. Numerical simulation of the Split Hopkinson Pressure Bar test technique for concrete under compression [J]. International Journal of Impact Engineering, 2010, 37(2): 141–149. DOI: 10.1016/j.ijimpeng.2009.06.012.
    [27] CUSATIS G. Strain-rate effects on concrete behavior [J]. International Journal of Impact Engineering, 2011, 38(4): 162–170. DOI: 10.1016/j.ijimpeng.2010.10.030.
    [28] SONG Z H, LU Y. Mesoscopic analysis of concrete under excessively high strain rate compression and implications on interpretation of test data [J]. International Journal of Impact Engineering, 2012, 46: 41–55. DOI: 10.1016/j.ijimpeng.2012.01.010.
    [29] MU Z C, DANCYGIER A N, ZHANG W, et al. Revisiting the dynamic compressive behavior of concrete-like materials [J]. International Journal of Impact Engineering, 2012, 49: 91–102. DOI: 10.1016/j.ijimpeng.2012.05.002.
    [30] ZHANG Q B, ZHAO J. A review of dynamic experimental techniques and mechanical behaviour of rock materials [J]. Rock Mechanics and Rock Engineering, 2014, 47(4): 1411–1478. DOI: 10.1007/s00603-013-0463-y.
    [31] 方秦, 洪建, 张锦华, 等. 混凝土类材料SHPB实验若干问题探讨 [J]. 工程力学, 2014, 31(5): 1–14,26. DOI: 10.6052/j.issn.1000-4750.2013.05.ST07.

    FANG Q, HONG J, ZHANG J H, et al. Issues of SHPB test on concrete-like material [J]. Engineering Mechanics, 2014, 31(5): 1–14,26. DOI: 10.6052/j.issn.1000-4750.2013.05.ST07.
    [32] XU H, WEN H M. A computational constitutive model for concrete subjected to dynamic loadings [J]. International Journal of Impact Engineering, 2016, 91: 116–125. DOI: 10.1016/j.ijimpeng.2016.01.003.
    [33] LEE S, KIM K M, PARK J, et al. Pure rate effect on the concrete compressive strength in the split Hopkinson pressure bar test [J]. International Journal of Impact Engineering, 2018, 113: 191–202. DOI: 10.1016/j.ijimpeng.2017.11.015.
    [34] 袁良柱, 苗春贺, 单俊芳, 等. 冲击下混凝土试样应变率效应和惯性效应探讨 [J]. 爆炸与冲击, 2022, 42(1): 013101. DOI: 10.11883/bzycj-2021-0114.

    YUAN L Z, MIAO C H, SHAN J F, et al. On strain-rate and inertia effects of concrete samples under impact [J]. Explosion and Shock Waves, 2022, 42(1): 013101. DOI: 10.11883/bzycj-2021-0114.
    [35] HAO Y, HAO H. Numerical investigation of the dynamic compressive behaviour of rock materials at high strain rate [J]. Rock Mechanics and Rock Engineering, 2013, 46(2): 373–388. DOI: 10.1007/s00603-012-0268-4.
    [36] LU D C, WANG G S, DU X L, et al. A nonlinear dynamic uniaxial strength criterion that considers the ultimate dynamic strength of concrete [J]. International Journal of Impact Engineering, 2017, 103: 124–137. DOI: 10.1016/j.ijimpeng.2017.01.011.
    [37] SAUER C, HEINE A, RIEDEL W. Developing a validated hydrocode model for adobe under impact loading [J]. International Journal of Impact Engineering, 2017, 104: 164–176. DOI: 10.1016/j.ijimpeng.2017.01.019.
    [38] YU X, CHEN L, FANG Q, et al. A concrete constitutive model considering coupled effects of high temperature and high strain rate [J]. International Journal of Impact Engineering, 2017, 101: 66–77. DOI: 10.1016/j.ijimpeng.2016.11.009.
    [39] LUCCIONI B, ISLA F, CODINA R, et al. Experimental and numerical analysis of blast response of high strength fiber reinforced concrete slabs [J]. Engineering Structures, 2018, 175: 113–122. DOI: 10.1016/j.engstruct.2018.08.016.
    [40] MALVERN L E, ROSS C A. Dynamic response of concrete and concrete structures [R]. Gainesville: University of Florida, 1984.
    [41] LIU F, LI Q M. Strain-rate effect of polymers and correction methodology in a SHPB test [J]. International Journal of Impact Engineering, 2022, 161: 104109. DOI: 10.1016/j.ijimpeng.2021.104109.
    [42] BRACE W F, RILEY D K. Static uniaxial deformation of 15 rocks to 30 kb [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1972, 9(2): 271−288. DOI: 10.1016/0148-9062(72)90028-9.
    [43] FORQUIN P, ARIAS A, ZAERA R. An experimental method of measuring the confined compression strength of geomaterials [J]. International Journal of Solids and Structures, 2007, 44(13): 4291–4317. DOI: 10.1016/j.ijsolstr.2006.11.022.
    [44] PIOTROWSKA E, FORQUIN P, MALECOT Y. Experimental study of static and dynamic behavior of concrete under high confinement: effect of coarse aggregate strength [J]. Mechanics of Materials, 2016, 92: 164–174. DOI: 10.1016/j.mechmat.2015.09.005.
    [45] XU S L, SHAN J F, ZHANG L, et al. Dynamic compression behaviors of concrete under true triaxial confinement: an experimental technique [J]. Mechanics of Materials, 2020, 140: 103220. DOI: 10.1016/j.mechmat.2019.103220.
    [46] 徐松林, 王鹏飞, 赵坚, 等. 基于三维Hopkinson杆的混凝土动态力学性能研究 [J]. 爆炸与冲击, 2017, 37(2): 180–185. DOI: 10.11883/1001-1455(2017)02-0180-06.

    XU S L, WANG P F, ZHAO J, et al. Dynamic behavior of concrete under static triaxial loading using 3D-Hopkinson bar [J]. Explosion and Shock Waves, 2017, 37(2): 180–185. DOI: 10.11883/1001-1455(2017)02-0180-06.
    [47] JOHNSON G, HOLMQUIST T, GERLACH C. Strain-rate effects associated with the HJC concrete model [C] // 12th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading. Arcachon, France, 2018: 01008. DOI: 10.1051/epjconf/201818301008.
    [48] HOLMQUIST T J, JOHNSON G R, COOK W H. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures [C] // Proceedings of the 14th International Symposium on Ballistics. Quebec, Canada, 1993: 591-600.
    [49] DRUCKER D C, PRAGER W. Soil mechanics and plastic analysis or limit design [J]. Quarterly of Applied Mathematics, 1952, 10(2): 157–165. DOI: 10.1090/qam/48291.
    [50] TU Z G, LU Y. Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations [J]. International Journal of Impact Engineering, 2009, 36(1): 132–146. DOI: 10.1016/j.ijimpeng.2007.12.010.
    [51] SIMULIA. Abaqus analysis user’s guide (Version 6. 13) [Z]. SIMULIA, 2013.
    [52] HAO Y, HAO H, LI Z X. Influence of end friction confinement on impact tests of concrete material at high strain rate [J]. International Journal of Impact Engineering, 2013, 60: 82–106. DOI: 10.1016/j.ijimpeng.2013.04.008.
    [53] AL-SALLOUM Y, ALMUSALLAM T, IBRAHIM S M, et al. Rate dependent behavior and modeling of concrete based on SHPB experiments [J]. Cement and Concrete Composites, 2015, 55: 34–44. DOI: 10.1016/j.cemconcomp.2014.07.011.
    [54] CUI J, HAO H, SHI Y C, et al. Volumetric properties of concrete under true triaxial dynamic compressive loadings [J]. Journal of Materials in Civil Engineering, 2019, 31(7): 04019126. DOI: 10.1061/(ASCE)MT.1943-5533.0002776.
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  777
  • HTML全文浏览量:  247
  • PDF下载量:  207
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-24
  • 修回日期:  2022-03-25
  • 网络出版日期:  2022-03-29
  • 刊出日期:  2022-09-29

目录

    /

    返回文章
    返回