相变对TiNi合金薄壁管中波速的影响

崔世堂 赵红宇 董方栋 张永亮

崔世堂, 赵红宇, 董方栋, 张永亮. 相变对TiNi合金薄壁管中波速的影响[J]. 爆炸与冲击, 2024, 44(9): 091425. doi: 10.11883/bzycj-2023-0368
引用本文: 崔世堂, 赵红宇, 董方栋, 张永亮. 相变对TiNi合金薄壁管中波速的影响[J]. 爆炸与冲击, 2024, 44(9): 091425. doi: 10.11883/bzycj-2023-0368
CUI Shitang, ZHAO Hongyu, DONG Fangdong, ZHANG Yongliang. Effect of phase transformation on wave speeds in TiNi alloy thin-walled tube[J]. Explosion And Shock Waves, 2024, 44(9): 091425. doi: 10.11883/bzycj-2023-0368
Citation: CUI Shitang, ZHAO Hongyu, DONG Fangdong, ZHANG Yongliang. Effect of phase transformation on wave speeds in TiNi alloy thin-walled tube[J]. Explosion And Shock Waves, 2024, 44(9): 091425. doi: 10.11883/bzycj-2023-0368

相变对TiNi合金薄壁管中波速的影响

doi: 10.11883/bzycj-2023-0368
详细信息
    作者简介:

    崔世堂(1978- ),男,博士,副研究员,cuist@ustc.edu.cn

    通讯作者:

    张永亮(1987- ),男,博士. 副研究员,zyld@ustc.edu.cn

  • 中图分类号: O347.4

Effect of phase transformation on wave speeds in TiNi alloy thin-walled tube

  • 摘要: 形状记忆合金在受到强冲击荷载作用时会发生相变,而相变对其结构件的动态力学响应影响显著。本文采用同时考虑静水压力和偏应力影响的相变临界准则,推导了增量型的相变本构模型。基于广义特征理论,得到了复杂应力状态下特征波速的解析表达式。特征波速不仅和材料本身的力学参数(如拉压不对称性和混合相的模量)有关,还和材料所处的应力状态有关。对因相变导致体积膨胀的TiNi合金而言,拉压不对称性系数的增大会提高慢波的波速,而对快波几乎没有影响。在相变椭圆的短轴处(α = 90°),慢波的波速最低,并随混合相无量纲模量的增大而显著减低,混合相无量纲模量由2增加至5时,波速降低幅度为36.2%,而快波的波速达到最大值c0,和混合相的模量无关;在相变椭圆的长轴处(α = 180°),慢波的速度达到最大值,而快波的波速达到最小值c2
  • 图  1  半无限长薄壁管

    Figure  1.  Schematic of semi-infinitely thin-walled tubes

    图  2  相变椭圆[23,26]

    Figure  2.  Phase transformation ellipse in the σ-τ plane

    图  3  σ-τ平面上的相变椭圆(α > 0)

    Figure  3.  Phase transformation ellipse in the σ-τ plane (α > 0)

    图  4  拉压不对称性对快波和慢波波速的影响

    Figure  4.  Effect of tension and compression asymmetry on wave speed of fast wave and slow wave

    图  5  混合相模量对相变应力波波速的影响(α = 0.1)

    Figure  5.  Effect of E/Em on phase transformation wave speed (α = 0.1)

  • [1] BANCROFT D, PETERSON E L, MINSHALL S. Polymorphism of iron at high pressure [J]. Journal of Applied Physics, 1956, 27(3): 291–298. DOI: 10.1063/1.1722359.
    [2] GUIDA M, SELLITTO A, MARULO F, et al. Analysis of the impact dynamics of shape memory alloy hybrid composites for advanced applications [J]. Materials, 2019, 12(1): 153. DOI: 10.3390/ma12010153.
    [3] GUPTA A K, VELMURUGAN R, JOSHI M, et al. Studies on shape memory alloy-embedded GFRP composites for improved post-impact damage strength [J]. International Journal of Crashworthiness, 2019, 24(4): 363–379. DOI: 10.1080/13588265.2018.1452549.
    [4] 唐志平. 相变应力波 [M]. 北京: 科学出版社, 2022: 194–247.

    TANG Z P. Stress waves with phase transition [M]. Beijing: Science Press, 2022: 194–247.
    [5] CHEN Y C, LAGOUDAS D C. Impact induced phase transformation in shape memory alloys [J]. Journal of the Mechanics and Physics of Solids, 2000, 48(2): 275–300. DOI: 10.1016/S0022-5096(99)00044-7.
    [6] BEKKER A, JIMENEZ-VICTORY J C, POPOV P, et al. Impact induced propagation of phase transformation in a shape memory alloy rod [J]. International Journal of Plasticity, 2002, 18(11): 1447–1479. DOI: 10.1016/S0749-6419(02)00025-6.
    [7] 王文强, 唐志平. 冲击下宏观相边界的传播 [J]. 爆炸与冲击, 2000, 20(1): 25–31. DOI: 10.3321/j.issn:1001-1455.2000.01.005.

    WANG W Q, TANG Z P. Propagation of macroscopic phase boundary under shock loading [J]. Explosion and Shock Waves, 2000, 20(1): 25–31. DOI: 10.3321/j.issn:1001-1455.2000.01.005.
    [8] TANG Z P, GUPTA Y M. Shock-induced phase transformation in cadmium sulfide dispersed in an elastomer [J]. Journal of Applied Physics, 1988, 64(4): 1827–1837. DOI: 10.1063/1.341782.
    [9] TANG Z P, DAI X. A preparation method of functionally graded materials with phase transition under shock loading [J]. Shock Waves, 2006, 15(6): 447–452. DOI: 10.1007/s00193-006-0048-8.
    [10] DAI X Y, TANG Z P, XU S L, et al. Propagation of macroscopic phase boundaries under impact loading [J]. International Journal of Impact Engineering, 2004, 30(4): 385–401. DOI: 10.1016/s0734-743x(03)00090-3.
    [11] NIEMCZURA J, RAVI-CHANDAR K. Dynamics of propagating phase boundaries in NiTi [J]. Journal of the Mechanics and Physics of Solids, 2006, 54(10): 2136–2161. DOI: 10.1016/j.jmps.2006.04.003.
    [12] ZHU P P, DAI H H. Wave propagation in a shape memory alloy bar under an impulsive loading [J]. Journal of Applied Mechanics, 2016, 83(10): 104502. DOI: 10.1115/1.4034115.
    [13] LIU Y G, SHEN L Y, CHEN Y J, et al. Thermomechanical coupling effect on the phase transition wave propagation in an SMA TiNi bar subjected to shock loading [J]. International Journal of Mechanical Sciences, 2022, 235: 107710. DOI: 10.1016/j.ijmecsci.2022.107710.
    [14] PLIETSCH R, EHRLICH K. Strength differential effect in pseudoelastic NiTi shape memory alloys [J]. Acta Materialia, 1997, 45(6): 2417–2424. DOI: 10.1016/S1359-6454(96)00354-0.
    [15] ORGÉAS L, FAVIER D. Stress-induced martensitic transformation of a NiTi alloy in isothermal shear, tension and compression [J]. Acta Materialia, 1998, 46(15): 5579–5591. DOI: 10.1016/S1359-6454(98)00167-0.
    [16] LEXCELLENT C, BLANC P. Phase transformation yield surface determination for some shape memory alloys [J]. Acta Materialia, 2004, 52(8): 2317–2324. DOI: 10.1016/j.actamat.2004.01.022.
    [17] GRABE C, BRUHNS O T. Path dependence and multiaxial behavior of a polycrystalline NiTi alloy within the pseudoelastic and pseudoplastic temperature regimes [J]. International Journal of Plasticity, 2009, 25(3): 513–545. DOI: 10.1016/j.ijplas.2008.03.002.
    [18] MEHRABI R, ANDANI M T, KADKHODAEI M, et al. Experimental study of NiTi thin-walled tubes under uniaxial tension, torsion, proportional and non-proportional loadings [J]. Experimental Mechanics, 2015, 55(6): 1151–1164. DOI: 10.1007/s11340-015-0016-2.
    [19] WANG X M, ZHOU Q T, LIU H, et al. Experimental study of the biaxial cyclic behavior of thin-wall Tubes of NiTi shape memory alloys [J]. Metallurgical and Materials Transactions A, 2012, 43(11): 4123–4128. DOI: 10.1007/s11661-012-1225-2.
    [20] FARAJPOUR M R, SHAHIDI A R, FARAJPOUR A. A nonlocal continuum model for the biaxial buckling analysis of composite nanoplates with shape memory alloy nanowires [J]. Materials Research Express, 2018, 5(3): 035026. DOI: 10.1088/2053-1591/aab3a9.
    [21] SITTNER P, HARA Y, TOKUDA M. Experimental study on the thermoelastic martensitic transformation in shape memory alloy polycrystal induced by combined external forces [J]. Metallurgical and Materials Transactions A, 1995, 26(11): 2923–2935. DOI: 10.1007/bf02669649.
    [22] SUN Q P, LI Z Q. Phase transformation in superelastic NiTi polycrystalline micro-tubes under tension and torsion–from localization to homogeneous deformation [J]. International Journal of Solids and Structures, 2002, 39(13/14): 3797–3809. DOI: 10.1016/S0020-7683(02)00182-8.
    [23] SONG Q Z, TANG Z P. Combined stress waves with phase transition in thin-walled tubes [J]. Applied Mathematics and Mechanics, 2014, 35(3): 285–296. DOI: 10.1007/s10483-014-1791-7.
    [24] 宋卿争. 复合加载下NiTi合金力学特性和相变波的研究 [D]. 合肥: 中国科学技术大学, 2014: 95–120.

    SONG Q Z. Mechanical properties and phase transition waves of NiTi alloy under combined stresses [D]. Hefei: University of Science and Technology of China, 2014: 95–120.
    [25] WANG B, TANG Z P. Study on the propagation of coupling shock waves with phase transition under combined tension-torsion impact loading [J]. Science China Physics, Mechanics & Astronomy, 2014, 57(10): 1977–1986. DOI: 10.1007/s11433-014-5468-3.
    [26] 王波. 相变材料及聚合物中的复合应力波研究 [D]. 合肥: 中国科学技术大学, 2017: 23–41.

    WANG B. Research on stress waves of phase transition material and polymer under combined stress [D]. Hefei: University of Science and Technology of China, 2017: 23–41.
    [27] CUI S T, LIANG L L. Influence of phase transformation on stress wave propagation in thin-walled tubes [J]. Waves in Random and Complex Media. DOI: 10.1080/17455030.2022.2164631.
    [28] LAGOUDAS D C. Shape memory alloys: modeling and engineering applications [M]. New York: Springer, 2008.
    [29] 李永池. 波动力学 [M]. 合肥: 中国科学技术大学出版社, 2015: 210–223.

    LI Y C. Wave mechanics [M]. Hefei: China University of Science and Technology Press, 2015: 210–223.
    [30] AURICCHIO F, PETRINI L. A three-dimensional model describing stress-temperature induced solid phase transformations: thermomechanical coupling and hybrid composite applications [J]. International Journal for Numerical Methods in Engineering, 2004, 61(5): 716–737. DOI: 10.1002/nme.1087.
    [31] QIDWAI M A, LAGOUDAS D C. On thermomechanics and transformation surfaces of polycrystalline NiTi shape memory alloy material [J]. International Journal of Plasticity, 2000, 16(10/11): 1309–1343. DOI: 10.1016/S0749-6419(00)00012-7.
    [32] 郭扬波, 唐志平, 徐松林. 一种考虑静水压力和偏应力共同作用的相变临界准则 [J]. 固体力学学报, 2004, 25(4): 417–422. DOI: 10.3969/j.issn.0254-7805.2004.04.009.

    GUO Y B, TANG Z P, XU S L. A critical criterion for phase transformation considering both hydrostatic pressure and deviatoric stress effects [J]. Acta Mechanica Solida Sinica, 2004, 25(4): 417–422. DOI: 10.3969/j.issn.0254-7805.2004.04.009.
  • 加载中
图(5)
计量
  • 文章访问数:  93
  • HTML全文浏览量:  37
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-30
  • 修回日期:  2024-05-10
  • 网络出版日期:  2024-05-14
  • 刊出日期:  2024-09-20

目录

    /

    返回文章
    返回