岩体爆破近区临界损伤质点峰值震动速度的确定

胡英国 卢文波 陈明 严鹏

胡英国, 卢文波, 陈明, 严鹏. 岩体爆破近区临界损伤质点峰值震动速度的确定[J]. 爆炸与冲击, 2015, 35(4): 547-554. doi: 10.11883/1001-1455(2015)04-0547-08
引用本文: 胡英国, 卢文波, 陈明, 严鹏. 岩体爆破近区临界损伤质点峰值震动速度的确定[J]. 爆炸与冲击, 2015, 35(4): 547-554. doi: 10.11883/1001-1455(2015)04-0547-08
Hu Ying-guo, Lu Wen-bo, Chen Ming, Yan Peng. Determination of critical damage PPV near the blast hole of rock-mass[J]. Explosion And Shock Waves, 2015, 35(4): 547-554. doi: 10.11883/1001-1455(2015)04-0547-08
Citation: Hu Ying-guo, Lu Wen-bo, Chen Ming, Yan Peng. Determination of critical damage PPV near the blast hole of rock-mass[J]. Explosion And Shock Waves, 2015, 35(4): 547-554. doi: 10.11883/1001-1455(2015)04-0547-08

岩体爆破近区临界损伤质点峰值震动速度的确定

doi: 10.11883/1001-1455(2015)04-0547-08
基金项目: 国家自然科学基金杰出青年基金项目(51125037);国家重点基础发展规划计划(973计划)项目(2011CB076354);中央高校基本科研业务费专项(2012206020205)
详细信息
    作者简介:

    胡英国(1987-), 男, 博士研究生; 通讯作者:卢文波, yghu@whu.edu.cn

    胡英国(1987-), 男, 博士研究生; 通讯作者:卢文波, yghu@whu.edu.cn

  • 中图分类号: O383.1

Determination of critical damage PPV near the blast hole of rock-mass

  • 摘要: 质点峰值振动速度(PPV)是爆破开挖扰动的重要指标,研究确定岩体临界损伤PPV对爆破损伤控制具有重要意义。以溪洛渡水电站640 m高程马道下边坡岩体的爆破开挖为工程背景,依据岩体跨孔声波测试结果,采用基于LS-DYNA的二次开发技术对保留岩体的损伤演化过程进行了数值模拟,结合数值模拟结果研究了爆破近区PPV的分布特征及其与损伤程度的对应关系,结果表明PPV存在门槛值,当PPV大于该值时,岩体的损伤变量从零开始迅速增加至0.8左右,之后随着PPV的增大,损伤增长速度明显减慢,直至岩体完全损伤;分别基于岩体的损伤度、最大拉应力的PPV判据以及近区拉应力峰值与PPV的统计关系等3种方法确定岩体临界损伤PPV,从定量衡量损伤区范围看,常用的基于最大拉应力的PPV判据确定的临界损伤PPV偏小,而其余2种方法确定的临界损伤PPV相对精确。
  • 图  1  马道岩体声波测试孔布置示意图

    Figure  1.  The arrangement of acoustic testing hole near the berm

    图  2  实测保留岩体损伤区深度示意图

    Figure  2.  The measurement depth of damage zone in remaining rock

    图  3  模型整体平面图

    Figure  3.  The globe planar graph of the model

    图  4  预裂孔与三维网格图

    Figure  4.  Mesh near the presplit hole

    图  5  拉压损伤模型总体损伤区计算云图

    Figure  5.  Cloud picture of the damage zone of the tensile-compression damage model

    图  6  近区PPV随爆心距衰减曲线

    Figure  6.  Attenuation relationships between PPV and distance to blast hole

    图  7  近区PPV等值线图

    Figure  7.  Contour map of PPV near the blast hole

    图  8  PPV与损伤变量关系曲线

    Figure  8.  Relationships curve of PPV versus damage scalar

    图  9  动拉应力峰值与PPV统计关系

    Figure  9.  The statistics relationship between the maximum stress and PPV

    图  10  损伤临界PPV确定示意图

    Figure  10.  Schematic diagram of deciding critical damage PPV

    图  11  四种方法损伤范围对比

    Figure  11.  Comparing of damage zone with four methods

    表  1  不同PPV下岩石损伤效果[11]

    Table  1.   Blast-induced damages under different PPVs[11]

    vpp/(cm·s-1)岩体损伤效果
    (0, 25)完整岩石不会致裂
    (25, 63.5)发生轻微的拉伸层裂
    (63.5, 254)严重的拉伸裂缝及一些径向裂缝
    (254, ∞)岩体完全破碎
    下载: 导出CSV

    表  2  岩石爆破损伤的质点峰值振动速度临界值[12]

    Table  2.   Peak particle velocity criteria for blast-induced damage[12]

    岩体损伤表现损伤程度vpp/(cm·s-1)
    斑岩页岩石英质中长岩
    台阶面松动岩块的偶尔掉落没有损伤12.75.163.5
    台阶面松动岩块的部分掉落可能有损伤但可接受38.125.4127.0
    部分台阶面松动、崩落轻微的爆破损伤63.538.1190.5
    台阶面严重破碎爆破损伤>63.5>38.1>190.5
    下载: 导出CSV

    表  3  岩体的材料参数及损伤模型相关参数

    Table  3.   Rock mass parameters and some special parameters about damage models

    ρ/(kg·m-3)Ek/GPaνσk/MPakmKIC/(MN·m-3/2)λ/(kg·J-1)
    2 530250.22822.33×102460.920.000 1
    下载: 导出CSV
  • [1] 朱传云, 卢文波.三峡工程临时船闸与升船机中隔墩爆破安全判据的研究[J].爆炸与冲击, 1998, 18(4): 375-380. http://www.bzycj.cn/article/id/10431

    Zhu Chuan-yun, Lu Wen-bo. Blasting safety criterion for the rock wall between temporary ship lock and ship lift in the Three Gorges Project[J]. Explosion and Shock Waves, 1998, 18(4): 375-380. http://www.bzycj.cn/article/id/10431
    [2] 李俊如, 夏祥, 李海波, 等.核电站基岩爆破开挖损伤区研究[J].岩石力学与工程学报, 2005, 24(S1): 4674-4678. http://d.wanfangdata.com.cn/Conference_5917364.aspx

    Li Jun-ru, Xia Xiang, Li Hai-bo, et al. Study on blast-induced bedrock damage extension for a nuclear power station project[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(S1): 4674-4678. http://d.wanfangdata.com.cn/Conference_5917364.aspx
    [3] Taylor L M, Chen E P, Kuszmaul J S. Micro-crack induced damage accumulation in brittle rock under dynamic loading[J]. Computer Methods in Applied Mechanics and Engineering, 1986; 55(3): 301-320.
    [4] Kuszmaul J S. A new constitutive model for fragmentation of rock under dynamic loading[C]//Proceedings of 2nd International Symposium on Rock Fragmentation by Blasting. Keystone, Canada, 1987: 412-423.
    [5] Thorne B J, Hommert P J, Brown B. Experimental and computational investigation of the fundamental mechanisms of cratering[C]//Proceedings of 3nd International Symposium on Rock Fragmentation by Blasting. Brisbane, Australia, 1990.
    [6] Yang R, Bawden W F, Katsabanis P D. A new constitutive model for blast damage[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1996, 33(3): 245-254. http://www.sciencedirect.com/science/article/pii/014890629500064X
    [7] Li Haibo, Xia Xiang, Li Jianchun. Rock damage control in bedrock blasting excavation for a nuclear power plant[J]. International Journal of Rock Mechanics and Mining Science, 2010, 48(2): 210-218. http://www.sciencedirect.com/science/article/pii/S1365160910002182
    [8] 卢文波.三峡工程临时船闸与升船机开挖中的爆破方案优化和爆破振动控制[J].岩石力学与工程学报, 1999, 18(5): 497-502 Lu Wen-bo. Optimization of blasting procedure and vibration control during excavation of temporary ship lock and ship lift in three gorges project[J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18(5): 497-502. http://www.cnki.com.cn/Article/CJFDTotal-YSLX199905004.htm
    [9] 陈明, 卢文波, 吴亮, 等.小湾水电站岩石高边坡爆破振动速度安全阈值研究[J].岩石力学与工程学报, 2007, 26(1): 51-55. http://d.wanfangdata.com.cn/Periodical/yslxygcxb200701007

    Chen Ming, Lu Wen-bo, Wu Liang, et al. Safety threshold of blasting vibration velocity to high rock slope of xiaowan hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(1): 51-55. http://d.wanfangdata.com.cn/Periodical/yslxygcxb200701007
    [10] 中华人民共和国行业标准编写组. SL47-94水工建筑物岩石基础开挖工程施工技术规范[S].北京: 水利电力出版社, 1995.
    [11] Bauer A, Calder P N. Open pit and blast seminar, 63221[R]. Kingston, Ontario, Canada: Mining Engineering Department, Queens University, 1978.
    [12] Savely J P. Designing a final blast to improve stability[C]//Proceedings of the SME Annual Meeting. New Orleans, Louisiana, USA, 1986.
    [13] 胡英国, 卢文波, 金旭浩, 等.岩石高边坡开挖爆破动力损伤的数值模拟[J].岩石力学与工程学报, 2012, 31(11): 2204-2213. http://www.cqvip.com/QK/96026X/201211/43896933.html

    Hu Ying-guo, Lu Wen-bo, Jin Xu-hao, et al. Numerical simulation for excavation blasting dynamic damage of rock high slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(11): 2204-2213. http://www.cqvip.com/QK/96026X/201211/43896933.html
    [14] Furlong J R, Davis J F, Alme M L. Modeling the dynamic load/unload behavior of ceramics under impact loading: RDA-TR-00.0-0001[R]. Arlington, Virginia, USA: R & D Associates Meeting, 1990.
    [15] LSTC. LS-DYNA theoretical manual[M]. Livermore, CA, USA: Livermore Software Technology Corporation, 2010.
    [16] Livermore, CA, USA: Livermore Software Technology Corporation, 2010.
    [17] Barton N. The influence of joint properties in modeling jointed rock masses[C]//Proceedings of the 8th ISRM Congress. Tokyo, Japan, 1995.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  3177
  • HTML全文浏览量:  383
  • PDF下载量:  575
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-12
  • 修回日期:  2013-04-15
  • 刊出日期:  2015-07-25

目录

    /

    返回文章
    返回