Munroe effect of detonation wave collision
-
摘要: 利用两高爆速导爆索对称布置于药卷两侧,起爆后炸药爆轰波在对称线处汇聚碰撞,当碰撞角度达到一定值时,发生马赫反射,使爆轰压力成倍增加,形成高压、高能量密度区域的聚能效应。本文在爆轰波传播碰撞理论的基础上,通过炸药做功能力和猛度试验验证爆轰波碰撞的聚能效果。做功能力试验结果表明爆轰波碰撞能够增加炸药能量利用率;猛度试验结果表明采用对称起爆技术下的爆轰波碰撞能够改变爆轰波在特定方向上的扩散作用。试验结果与爆轰波入射角的几何关系表明,当高爆速起爆药条与主装药爆速比例在1.15倍以上时,爆轰波碰撞能够达到一定的聚能效果。Abstract: The Mach reflection occurs when two high-detonation-velocity detonating cords are arranged symmetrically on both sides of the cartridge. After the detonation the explosive's detonation waves converge and collide along the line of symmetry, multiplying the detonation pressure and forming a Munroe effect region with high pressure and high energy density when the collision angle reaches a certain value. In this paper, explosive-determination of power and brisance tests were conducted based on the theory of detonation wave collision and reflection. The results from the test of the explosive-determination of power show that the detonation wave collision can improve the efficiency of the explosive energy utilization, and those from the test of the brisance show that the symmetrical initiation of the detonation can change its distribution in a particular direction. The geometrical relationship of the experimental results with the incidence angle of the detonation wave shows that, when the initiating explosive velocity is above 1.15 times that of the main charge, the detonation wave collision will produce a certain degree of Munroe effect.
-
Key words:
- detonation wave /
- Munroe effect /
- Mach reflection /
- lead block test /
- lead cylinder compression test
-
表 1 炸药做功能力试验结果
Table 1. Test results of explosive-determination of power
编号 起爆方式 爆前
体积/ml爆后
体积/ml起爆器具修正/ml
(去除雷管和导爆索影响)体积差
均值/ml爆前
孔深/mm爆后
孔深/mm孔深差
均值/mm1 电雷管 60.00 279.00 -24.64 229.25 125.00 135.00 10.00 2 60.00 296.00 -24.64 125.00 135.00 3 并拢式 63.00 300.00 -11.72 261.14 125.00 142.00 15.50 4 63.00 315.00 -11.72 125.00 139.00 5 分离式 63.00 316.00 -11.72 259.19 125.00 144.00 18.00 6 64.50 297.00 -11.72 125.00 142.00 7 仅双导爆索 65.00 75.00 11.72 8 65.00 76.00 表 2 炸药猛度试验结果
Table 2. Test results of explosive-determination of brisance
炸药类型 编号 起爆方式 铅柱高度/mm 爆前 爆后 高差 高差平均 蓬松硝酸铵
(爆速2 500 m/s)1(1) 电雷管 59.70 47.39 12.31 12.08 2(2) 59.60 47.76 11.84 3(3) 并拢式 60.10 48.60 11.51 10.70 4(4) 59.83 49.94 9.89 5(5) 分离式 60.03 49.16 10.87 11.46 6(6) 59.75 47.70 12.05 乳化炸药
(爆速3 400 m/s)7(9) 电雷管 60.07 51.44 8.63 8.52 8(10) 60.37 51.97 8.40 9(15) 并拢式 60.15 52.89 7.26 7.30 10(16) 60.08 52.74 7.35 11(17) 分离式 59.60 52.16 7.45 7.90 12(18) 60.13 51.78 8.35 黑索金
(爆速6 800 m/s)13(13) 电雷管 59.97 38.83 21.14 22.73 14(14) 60.01 36.23 23.78 15(7) 并拢式 60.23 37.62 22.61 22.46 16(8) 59.85 37.01 22.85 17(11) 分离式 60.13 18(12) 60.09 注:编号()中的数字对应图 3中试验后铅柱上的标号。 -
[1] Dunne B. Mach reflection of detonation waves in condensed high explosivesⅡ[J]. Physics of Fluids, 1964, 7(10):1707-1712. doi: 10.1063/1.1711077 [2] Bohr H, Courant R, Stoker J J. Supersonic flow and shock waves[M]. New York: Interscience Publishers, 1948:331-346. [3] 冯其京, 何鹏程, 杭义洪, 等.聚能装药的欧拉数值模拟[J].爆炸与冲击, 2008, 28(2):138-143. doi: 10.3321/j.issn:1001-1455.2008.02.007Feng Qijing, He Pengcheng, Hang Yihong, et al. Eulerian numerical simulation of a shaped charge[J]. Explosion and Shock Waves, 2008, 28(2):138-143. doi: 10.3321/j.issn:1001-1455.2008.02.007 [4] 秦健飞.双聚能预裂与光面爆破技术[M].北京:中国水利水电出版社, 2014:45-48. [5] 赵长啸, 龙源, 纪冲, 等.多点起爆下药型罩表面压力分布规律研究[J].高压物理学报, 2013, 27(1):83-89. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20132013050700063915Zhao Changxiao, Long Yuan, Ji Chong, et al. Distribution law of pressure on linear surface under multi-point initiation[J]. Chinese Journal of High Pressure Physics, 2013, 27(1):83-89. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20132013050700063915 [6] 刘建青, 顾文彬, 徐浩铭, 等.多点起爆装药结构参数对尾翼EFP成型的研究[J].含能材料, 2014, 22(5):594-599. http://www.cqvip.com/QK/90247X/201405/662708430.htmlLiu Jianqing, Gu Wenbin, Xu Haoming, et al. Effects of multi-point initiation charge configuration parameters on EFP with fins formation[J]. Chinese Journal of Energetic Materials, 2014, 22(5):594-599. http://www.cqvip.com/QK/90247X/201405/662708430.html [7] 曹雄, 刘瑛, 胡双启, 等.环形传爆药柱多点起爆数值模拟及威力测试[J].火工品, 2005, 12(5):16-18. doi: 10.3969/j.issn.1003-1480.2005.05.005Cao Xiong, Liu Ying, Hu Shuangqi, et al. Numerical simulation and power test on the annular booster initiated by multi-point explosive circuit[J]. Initiation Pyrotechnics, 2005, 12(5):16-18. doi: 10.3969/j.issn.1003-1480.2005.05.005 [8] 韦祥光. 爆轰波聚能爆破的技术基础研究[D]. 大连: 大连理工大学, 2012: 40-43. http://cdmd.cnki.com.cn/Article/CDMD-10141-1012394712.htm [9] 王宇新, 李晓杰, 闫鸿浩, 等.爆轰波碰撞聚能无网格MPM法数值模拟[J].计算力学学报, 2014, 31(2):223-227. http://d.old.wanfangdata.com.cn/Periodical/jslxxb201402014Wang Yuxin, Li Xiaojie, Yan Honghao, et al. Simulation on assembling energy of detonation wave by using MPM[J]. Chinese Journal of Computational Mechanics, 2014, 31(2):223-227. http://d.old.wanfangdata.com.cn/Periodical/jslxxb201402014 [10] 孙新利.内爆冲击动力学[M].西安:西北工业大学出版社, 2011:37-50. [11] 赵铮, 陶钢, 杜长星.爆轰产物JWL状态方程应用研究[J].高压物理学报, 2009, 23(4):277-282. doi: 10.3969/j.issn.1000-5773.2009.04.007Zhao Zheng, Tao Gang, Du Changxing. Application research on JWL equation of state of detonation products[J]. Chinese Journal of High Pressure Physics, 2009, 23(4):277-282. doi: 10.3969/j.issn.1000-5773.2009.04.007 [12] 中华人民共和国机械电子工业部. 炸药做功能力试验-铅壔法: GB 12436-90[S]. 1991: 1-4. [13] 中华人民共和国机械电子工业部. 炸药猛度试验-铅柱压缩法: GB 12440-90[S]. 1991: 1-10. [14] 李晓杰, 李瑞勇, 马玉磬, 等.工业炸药线型聚能切割器的研制[J].工程爆破, 2004, 10(2):5-8. doi: 10.3969/j.issn.1006-7051.2004.02.002Li Xiaojie, Li Ruiyong, Ma Yuqing, et al. Development of a linear shaped charge loaded with an industrial explosive[J]. Engineering Blasting, 2004, 10(2):5-8. doi: 10.3969/j.issn.1006-7051.2004.02.002