高熵合金冲击变形行为研究进展

陈海华 张先锋 刘闯 林琨富 熊玮 谈梦婷

陈海华, 张先锋, 刘闯, 林琨富, 熊玮, 谈梦婷. 高熵合金冲击变形行为研究进展[J]. 爆炸与冲击, 2021, 41(4): 041402. doi: 10.11883/bzycj-2020-0414
引用本文: 陈海华, 张先锋, 刘闯, 林琨富, 熊玮, 谈梦婷. 高熵合金冲击变形行为研究进展[J]. 爆炸与冲击, 2021, 41(4): 041402. doi: 10.11883/bzycj-2020-0414
CHEN Haihua, ZHANG Xianfeng, LIU Chuang, LIN Kunfu, XIONG Wei, TAN Mengting. Research progress on impact deformation behavior of high-entropy alloys[J]. Explosion And Shock Waves, 2021, 41(4): 041402. doi: 10.11883/bzycj-2020-0414
Citation: CHEN Haihua, ZHANG Xianfeng, LIU Chuang, LIN Kunfu, XIONG Wei, TAN Mengting. Research progress on impact deformation behavior of high-entropy alloys[J]. Explosion And Shock Waves, 2021, 41(4): 041402. doi: 10.11883/bzycj-2020-0414

高熵合金冲击变形行为研究进展

doi: 10.11883/bzycj-2020-0414
基金项目: 国家自然科学基金重大项目(11790292);国家自然科学基金委员会与中国工程物理研究院联合基金(U1730101)
详细信息
    作者简介:

    陈海华(1994- ),男,博士研究生,chhzxy201609@njust.edu.cn

    通讯作者:

    张先锋(1978- ),男,教授,lynx@njust.edu.cn

  • 中图分类号: O382; TJ410

Research progress on impact deformation behavior of high-entropy alloys

  • 摘要: 高熵合金作为一种多主元合金,突破了传统合金单主元的设计思想,体现出不同于传统合金的优异性能,特别在高温、高压、高应变率等极端环境中有着良好的应用前景。从微观、细观与宏观尺度分析高熵合金的冲击变形特性对于其工程应用具有重要的指导作用,主要涉及元素效应、细观结构以及高温高应变率条件对高熵合金冲击损伤演化、微观结构变化和冲击变形演化过程的影响机制。元素效应主要讨论了原子半径差异较大的金属与非金属元素对高熵合金冲击变形行为的影响;根据细观结构不同,将高熵合金分为单相与多相结构,单相高熵合金为塑性较好的面心立方(face centered cubic,FCC)结构、强度较高的体心立方(body centered cubic,BCC)与密排六方(hexagonal close-packed,HCP)结构。多相高熵合金的细观结构为这三种单相结构或者与其他相的组合,多相高熵合金的协同变形能够使其获得更为优异的综合力学性能。高温与高应变率作为外部条件对高熵合金的影响与其他金属相似,高温促进材料软化而高应变率促进材料硬化,部分高熵合金在高温下具有更优异的抗变形能力。针对高熵合金的冲击特性,总结了目前高熵合金在国防工程冲击领域的应用,归纳了高熵合金冲击变形行为研究存在的问题,并进一步对高熵合金在极端条件下的应用进行了展望。
  • 图  1  FeNiCoCr高熵合金静动态力学性能[16]

    Figure  1.  Static and dynamic mechanical properties of FeNiCoCr high-entropy alloy[16]

    图  2  AlCoCrFeNi高熵合金静动态力学性能[18]

    Figure  2.  Static and dynamic mechanical properties of AlCoCrFeNi high-entropy alloy[18]

    图  3  FeNiCoCrMn高熵合金动态力学性能[19]

    Figure  3.  Dynamic mechanical properties of FeNiCoCrMn high-entropy alloy[19]

    图  4  FeNiCoCrMn与FeNiCoCrAl高熵合金冲击性能对比[20]

    Figure  4.  Impact performance comparison between FeNiCoCrMn and FeNiCoCrAl high-entropy alloy[20]

    图  5  变形与未变形样品TEM显微结构特征[20]

    Figure  5.  TEM images showing different microstructural features in the deformed and undeformed samples[20]

    图  6  CrMnFeCoNi与CrFeCoNiPd高熵合金的对比[7]

    Figure  6.  Comparison of CrMnFeCoNi with CrFeCoNiPd HEA[7]

    图  7  Fe40.4Ni11.3Mn34.8Al7.5Cr6高熵合金的工程应力应变曲线[21]

    Figure  7.  Typical true stress as a function of true strain for carbon-doped Fe40.4Ni11.3Mn34.8Al7.5Cr6 HEAs[21]

    图  8  室温下AlFeCoNiCxx=0、0.02、0.04、0.08和0.17)合金的压缩真应力应变曲线[23]

    Figure  8.  Compressive true stress-strain curves of the AlFeCoNiCx (x = 0, 0.02, 0.04, 0.08, and 0.17) alloys at room temperature[23]

    图  9  AlFeCoNiCx高熵合金断口扫描电镜显微图像[23]

    Figure  9.  SEM micrographs of fracture surface of the AlFeCoNiCx high-entropy alloys[23]

    图  10  CoCrFeNiMn高熵合金室温压缩工程应力应变曲线[24]

    Figure  10.  Room-temperature compressive engineering stress-strain curves of CoCrFeNiMn HEA and CoCrFeNiMnN0.1 HEA[24]

    图  11  反极图显示样品CD平面上的形变孪晶[26]

    Figure  11.  Inverse pole figure maps showing deformation twinning on the CD planes of samples[26]

    图  12  透射电镜图像的位错与交叉滑移现象[7]

    Figure  12.  Dislocation and cross-slip phenomenon of TEM[7]

    图  13  Nb25Mo25Ta25W25和V20Nb20Mo20Ta20W20合金在1 400 ℃压缩变形后的扫描电镜背散射图像[11]

    Figure  13.  SEM backscatter images of the Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 alloys after compressive deformation at 1 400 °C[11]

    图  14  纳米压痕引起的位错[8]

    Figure  14.  Dislocations induced by nanoindentation[8]

    图  15  TRIP双相高熵合金的变形顺序[28]

    Figure  15.  Sequence of micro-processes in the TRIP-DP-HEA[28]

    图  16  扫描电镜图像显示了AlCoCrFeNi2.1高熵合金中的BCC(B2)相的不同断裂模式[32]

    Figure  16.  SEM images showing different fracture modes of the BCC (B2) phase in AlCoCrFeNi2.1 alloy[32]

    图  17  双相钢的显微组织与力学特性[33]

    Figure  17.  Microstructure and tensile properties of the dual-phase steel[33]

    图  18  80%金属丝复合材料的断裂形态[35]

    Figure  18.  Fracture morphology of 80% wire composites[35]

    图  19  体积分数50%钨颗粒与体积分数80%钨丝增强的Zr57Nb5Al10Cu15.4Ni12.6非晶合金准静态压缩后的断裂表面SEM微观图像[36]

    Figure  19.  SEM micrograph of the quasi-static compressive fracture surface Zr57Nb5Al10Cu15.4Ni12.6 reinforced with volume fraction 50% W particles and with volume fraction 80% W wire[36]

    图  20  钨丝增强非晶合金长杆弹残余弹体头部纵剖面金相照片[39]

    Figure  20.  Metallographic photos of the longitudinal section of residual WF/MG composite rod nose[39]

    图  21  样本裂缝的扫描电子显微照片[42]

    Figure  21.  Scanning electron micrographs of the cracks in the specimen[42]

    图  22  两个不同区域的屈服强度随应变率的变化[43]

    Figure  22.  Variation of yielding strength with strain rate for two distinct regions[43]

    图  23  屈服强度和0.05偏移应变时的流动应力是压缩载荷下应变率对数的函数[46]

    Figure  23.  The yield strength and the flow stress at 0.05 offset strain as a function of the logarithm of the strain rate applied in compression loading[46]

    图  24  两种不同区域下屈服强度随应变速率的变化[18]

    Figure  24.  Variation of yield strength with strain rate in two distinct regions[18]

    图  25  高熵合金的屈服强度是对数应变率的函数[26]

    Figure  25.  The yield strength as a function of the logarithmic strain rate for the CoCrFeMnNi high-entropy alloys[26]

    图  26  不同工程应变率下CrMnFeCoNi(HE-1)和CrFeCoNi(HE-4)合金0.2%偏移屈服强度的温度依赖性[14]

    Figure  26.  Temperature dependencies of the 0.2% offset yield strengths of the CrMnFeCoNi (HE-1) and CrFeCoNi (HE-4) alloys tensile tested at different engineering strain rates[14]

    图  27  不同温度下TaNbHfZrTi工程应力应变压缩曲线[52]

    Figure  27.  Engineering stress vs engineering strain compression curves of the TaNbHfZrTi alloy at different temperatures[52]

    图  28  TaNbHfZrTi屈服强度的温度依赖性[52]

    Figure  28.  The temperature dependence of the specific yield strength of the TaNbHfZrTi alloy[52]

    图  29  从不同应变率下的等温压缩试验得到的CoCrFeMnNi高熵合金的真实应力应变曲线[53]

    Figure  29.  The true stress-strain curves for the CoCrFeMnNi HEA obtained from isothermal compression tests at various strain rates[53]

    图  30  Al4Nb4-HEA在拉伸应变作用下的高温应力应变曲线[54]

    Figure  30.  High-temperature stress-strain curves of the Al4Nb4 HEA subjected to tensile strain[54]

    图  31  不同合金拉伸屈服强度随温度变化的屈服强度(YS)和最终拉伸强度(UTS)的比较[54]

    Figure  31.  Comparison of the YS and UTS as a function of temperature with the tensile YS of different alloys[54]

    图  32  HfZrTiTa0.53高熵合金不同速度下穿靶爆燃过程的高速摄影[9]

    Figure  32.  High-speed video frames of deflagration process of HfZrTiTa0.53 HEA at different speeds[9]

    图  33  WFeNiMo高熵合金在不同速度下穿靶爆燃过程的高速摄影[57]

    Figure  33.  High-speed video frames of deflagration process of WFeNiMo HEA at different speeds[57]

    图  34  WFeNiMo和93W长杆弹侵彻深度与动能的关系[58]

    Figure  34.  Depth of penetration of WFeNiMo rod and 93 W rod versus kinetic energy[58]

    图  35  WFeNiMo断裂面附近区域的放大扫描电镜图像[58]

    Figure  35.  Magnified SEM images of regions near the fracture surface of WFeNiMo remnant[58]

    图  36  防弹盒[59]

    Figure  36.  Ballistic Package[59]

    图  37  7.62 mm×39 mm钢芯穿甲燃烧弹后的高熵合金靶板[60]

    Figure  37.  HEA plate after the firing of a 7.62 mm×39 mm steel core incendiary armour-piercing bullet[60]

    图  38  铸态Al0.1CoCrFeNi高熵合金弹道试验[61]

    Figure  38.  Ballistic test of as-cast Al0.1CoCrFeNi HEA[61]

  • [1] YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Advanced Engineering Materials, 2004, 6(5): 299–303. DOI: 10.1002/adem.200300567.
    [2] CANTOR B, CHANG I T H, KNIGHT P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Materials Science and Engineering: A, 2004, 375: 213–218. DOI: 10.1016/j.msea.2003.10.257.
    [3] 张勇, 陈明彪, 杨潇. 先进高熵合金技术[M]. 北京: 化学工业出版社, 2019: 5−6.
    [4] 李建国, 黄瑞瑞, 张倩, 等. 高熵合金的力学性能及变形行为研究进展 [J]. 力学学报, 2020, 52(2): 333–359. DOI: 10.6052/0459-1879-20-009.

    LI J G, HUANG R R, ZHANG Q, et al. Mechnical properties and behaviors of high entropy alloys [J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 333–359. DOI: 10.6052/0459-1879-20-009.
    [5] 李甲, 冯慧, 陈阳, 等. 高熵合金强韧化理论建模与模拟研究进展 [J]. 固体力学学报, 2020, 41(2): 93–108. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2020.009.

    LI J, FENG H, CHEN Y, et al. Progress in theoretical modeling and simulation on strengthening and toughening of high-entropy alloys [J]. Chinese Journal of Solid Mechanics, 2020, 41(2): 93–108. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2020.009.
    [6] 吕昭平, 雷智锋, 黄海龙, 等. 高熵合金的变形行为及强韧化 [J]. 金属学报, 2018, 54(11): 1553–1566. DOI: 10.11900/0412.1961.2018.00372.

    LÜ Z P, LEI Z F, HUANG H L, et al. Deformation behavior and toughening of high-entropy alloys [J]. Acta Metallurgica Sinica, 2018, 54(11): 1553–1566. DOI: 10.11900/0412.1961.2018.00372.
    [7] DING Q Q, ZHANG Y, CHEN X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys [J]. Nature, 2019, 574(7777): 223–227. DOI: 10.1038/s41586-019-1617-1.
    [8] WANG F L, BALBUS G H, XU S Z, et al. Multiplicity of dislocation pathways in a refractory multiprincipal element alloy [J]. Science, 2020, 370(6512): 95–101. DOI: 10.1126/science.aba3722.
    [9] ZHANG Z R, ZHANG H, TANG Y, et al. Microstructure, mechanical properties and energetic characteristics of a novel high-entropy alloy HfZrTiTa0.53 [J]. Materials & Design, 2017, 133: 435–443. DOI: 10.1016/j.matdes.2017.08.022.
    [10] SENKOV O N, WILKS G B, MIRACLE D B, et al. Refractory high-entropy alloys [J]. Intermetallics, 2010, 18(9): 1758–1765. DOI: 10.1016/j.intermet.2010.05.014.
    [11] SENKOV O N, WILKS G B, SCOTT J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19(5): 698–706. DOI: 10.1016/j.intermet.2011.01.004.
    [12] CHEN H, KAUFFMANN A, LAUBE S, et al. Contribution of lattice distortion to solid solution strengthening in a series of refractory high entropy alloys [J]. Metallurgical and Materials Transactions A, 2018, 49(3): 772–781. DOI: 10.1007/s11661-017-4386-1.
    [13] 刘张全, 乔珺威. 难熔高熵合金的研究进展 [J]. 中国材料进展, 2019, 38(8): 767–774. DOI: 10.7502/j.issn.1674-3962.201812016.

    LIU Z Q, QIAO J W. Research progress of refractory high-entropy alloys [J]. Materials China, 2019, 38(8): 767–774. DOI: 10.7502/j.issn.1674-3962.201812016.
    [14] GALI A, GEORGE E P. Tensile properties of high- and medium-entropy alloys [J]. Intermetallics, 2013, 39: 74–78. DOI: 10.1016/j.intermet.2013.03.018.
    [15] GEORGE E P, CURTIN W A, TASAN C C. High entropy alloys: a focused review of mechanical properties and deformation mechanisms [J]. Acta Materialia, 2020, 188: 435–474. DOI: 10.1016/j.actamat.2019.12.015.
    [16] ZHANG T W, MA S G, ZHAO D, et al. Simultaneous enhancement of strength and ductility in a NiCoCrFe high-entropy alloy upon dynamic tension: micromechanism and constitutive modeling [J]. International Journal of Plasticity, 2020, 124: 226–246. DOI: 10.1016/j.ijplas.2019.08.013.
    [17] WANG W R, WANG W L, WANG S C, et al. Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys [J]. Intermetallics, 2012, 26: 44–51. DOI: 10.1016/j.intermet.2012.03.005.
    [18] 王璐, 马胜国, 赵聃, 等. AlCoCrFeNi高熵合金在冲击载荷下的动态力学性能 [J]. 热加工工艺, 2018, 47(24): 86–89. DOI: 10.14158/j.cnki.1001-3814.2018.24.021.

    WANG L, MA S G, ZHAO D, et al. Dynamic mechanical properties of AlCoCrFeNi high-entropy alloys under impact load [J]. Hot Working Technology, 2018, 47(24): 86–89. DOI: 10.14158/j.cnki.1001-3814.2018.24.021.
    [19] 黄小霞, 汪冰峰, 刘彬. FeCoNiCrMn高熵合金动态力学性能与微观结构 [J]. 矿冶工程, 2018, 38(3): 136–139. DOI: 10.3969/j.issn.0253-6099.2018.03.033.

    HUANG X X, WANG B F, LIU B. Dynamic mechanical properties and microstructure of FeCoNiCrMn high entropy alloy [J]. Mining and Metallurgical Engineering, 2018, 38(3): 136–139. DOI: 10.3969/j.issn.0253-6099.2018.03.033.
    [20] JIANG Z J, HE J Y, WANG H Y, et al. Shock compression response of high entropy alloys [J]. Materials Research Letters, 2016, 4(4): 226–232. DOI: 10.1080/21663831.2016.1191554.
    [21] WANG Z W, BAKER I, CAI Z H, et al. The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys [J]. Acta Materialia, 2016, 120: 228–239. DOI: 10.1016/j.actamat.2016.08.072.
    [22] STEPANOV N D, SHAYSULTANOV D G, CHERNICHENKO R S, et al. Effect of thermomechanical processing on microstructure and mechanical properties of the carbon-containing CoCrFeNiMn high entropy alloy [J]. Journal of Alloys and Compounds, 2017, 693: 394–405. DOI: 10.1016/j.jallcom.2016.09.208.
    [23] FAN J T, ZHANG L J, YU P F, et al. Improved the microstructure and mechanical properties of AlFeCoNi high-entropy alloy by carbon addition [J]. Materials Science and Engineering: A, 2018, 728: 30–39. DOI: 10.1016/j.msea.2018.05.013.
    [24] XIE Y C, CHENG H, TANG Q H, et al. Effects of N addition on microstructure and mechanical properties of CoCrFeNiMn high entropy alloy produced by mechanical alloying and vacuum hot pressing sintering [J]. Intermetallics, 2018, 93: 228–234. DOI: 10.1016/j.intermet.2017.09.013.
    [25] CHEN Y W, LI Y K, CHENG X W, et al. Interstitial strengthening of refractory ZrTiHfNb0.5Ta0.5O x (x= 0.05, 0.1, 0.2) high-entropy alloys [J]. Materials Letters, 2018, 228: 145–147. DOI: 10.1016/j.matlet.2018.05.123.
    [26] PARK J M, MOON J, BAE J W, et al. Strain rate effects of dynamic compressive deformation on mechanical properties and microstructure of CoCrFeMnNi high-entropy alloy [J]. Materials Science and Engineering: A, 2018, 719: 155–163. DOI: 10.1016/j.msea.2018.02.031.
    [27] LU Y P, DONG Y, GUO S, et al. A promising new class of high-temperature alloys: eutectic high-entropy alloys [J]. Scientific Reports, 2014, 4: 6200. DOI: 10.1038/srep06200.
    [28] LI Z M, PRADEEP K G, DENG Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534(7606): 227–230. DOI: 10.1038/nature17981.
    [29] LI Z M, TASAN C C, PRADEEP K G, et al. A TRIP-assisted dual-phase high-entropy alloy: grain size and phase fraction effects on deformation behavior [J]. Acta Materialia, 2017, 131: 323–335. DOI: 10.1016/j.actamat.2017.03.069.
    [30] WANG M M, TASAN C C, PONGE D, et al. Nanolaminate transformation-induced plasticity-twinning-induced plasticity steel with dynamic strain partitioning and enhanced damage resistance [J]. Acta Materialia, 2015, 85: 216–228. DOI: 10.1016/j.actamat.2014.11.010.
    [31] TASAN C C, DIEHL M, YAN D, et al. An overview of dual-phase steels: advances in microstructure-oriented processing and micromechanically guided design [J]. Annual Review of Materials Research, 2015, 45: 391–431. DOI: 10.1146/annurev-matsci-070214-021103.
    [32] GAO X Z, LU Y P, ZHANG B, et al. Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy [J]. Acta Materialia, 2017, 141: 59–66. DOI: 10.1016/j.actamat.2017.07.041.
    [33] GHASSEMI-ARMAKI H, MAAß R, BHAT S P, et al. Deformation response of ferrite and martensite in a dual-phase steel [J]. Acta Materialia, 2014, 62: 197–211. DOI: 10.1016/j.actamat.2013.10.001.
    [34] CONNER R D, DANDLIKER R B, SCRUGGS V, et al. Dynamic deformation behavior of tungsten-fiber/metallic-glass matrix composites [J]. International Journal of Impact Engineering, 2000, 24(5): 435–444. DOI: 10.1016/S0734-743X(99)00176-1.
    [35] CHOI-YIM H, LEE S Y, CONNER R D. Mechanical behavior of Mo and Ta wire-reinforced bulk metallic glass composites [J]. Scripta Materialia, 2008, 58(9): 763–766. DOI: 10.1016/j.scriptamat.2007.12.037.
    [36] CHOI-YIM H, CONNER R D, SZUECS F, et al. Quasistatic and dynamic deformation of tungsten reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass matrix composites [J]. Scripta Materialia, 2001, 45(9): 1039–1045. DOI: 10.1016/S1359-6462(01)01134-4.
    [37] LI H, SUBHASH G, KECSKES L J, et al. Mechanical behavior of tungsten preform reinforced bulk metallic glass composites [J]. Materials Science and Engineering: A, 2005, 403(1): 134–143. DOI: 10.1016/j.msea.2005.04.053.
    [38] 陈小伟, 李继承, 张方举, 等. 钨纤维增强金属玻璃复合材料弹穿甲钢靶的实验研究 [J]. 爆炸与冲击, 2012, 32(4): 346–354. DOI: 10.11883/1001-1455(2012)04-0346-09.

    CHEN X W, LI J C, ZHANG F J, et al. Experimental research on the penetration of tungsten-fiber/metallic glass-matrix composite material penetrator into steel target [J]. Explosion and Shock Waves, 2012, 32(4): 346–354. DOI: 10.11883/1001-1455(2012)04-0346-09.
    [39] CHEN X W, WEI L M, LI J C. Experimental research on the long rod penetration of tungsten-fiber/Zr-based metallic glass matrix composite into Q235 steel target [J]. International Journal of Impact Engineering, 2015, 79: 102–116. DOI: 10.1016/j.ijimpeng.2014.11.007.
    [40] 李继承, 陈小伟, 黄风雷. 块体金属玻璃压缩变形和破坏特性的有限元模拟研究 [J]. 固体力学学报, 2016, 37(S1): 56–64.

    LI J C, CHEN X W, HUANG F L. FEM simulation on deformation and failure in bulk metallic glasses under quasistatic compression [J]. Chinese Journal of Solid Mechanics, 2016, 37(S1): 56–64.
    [41] 李继承. 金属玻璃及其复合材料的剪切变形与破坏[D]. 北京: 北京理工大学, 2016: 149−188.
    [42] WANG B F, FU A, HUANG X X, et al. Mechanical properties and microstructure of the CoCrFeMnNi high entropy alloy under high strain rate compression [J]. Journal of Materials Engineering and Performance, 2016, 25(7): 2985–2992. DOI: 10.1007/s11665-016-2105-5.
    [43] ZHANG T W, JIAO Z M, WANG Z H, et al. Dynamic deformation behaviors and constitutive relations of an AlCoCr1.5Fe1.5NiTi0.5 high-entropy alloy [J]. Scripta Materialia, 2017, 136: 15–19. DOI: 10.1016/j.scriptamat.2017.03.039.
    [44] MEYERS M A. Dynamic behavior of materials[M]. New York: John Wiley & Sons Inc., 1994: 296-378.
    [45] ARMSTRONG R W, LI Q Z. Dislocation mechanics of high-rate deformations [J]. Metallurgical and Materials Transactions A, 2015, 46(10): 4438–4453. DOI: 10.1007/s11661-015-2779-6.
    [46] DIRRAS G, COUQUE H, LILENSTEN L, et al. Mechanical behavior and microstructure of Ti20Hf20Zr20Ta20Nb20 high-entropy alloy loaded under quasi-static and dynamic compression conditions [J]. Materials Characterization, 2016, 111: 106–113. DOI: 10.1016/j.matchar.2015.11.018.
    [47] COUQUE H. The use of the direct impact Hopkinson pressure bar technique to describe thermally activated and viscous regimes of metallic materials [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 372(2023): 20130218. DOI: 10.1098/rsta.2013.0218.
    [48] KUMAR N, YING Q, NIE X, et al. High strain-rate compressive deformation behavior of the Al0.1CrFeCoNi high entropy alloy [J]. Materials & Design, 2015, 86: 598–602. DOI: 10.1016/j.matdes.2015.07.161.
    [49] GUO W G, NEMAT-NASSER S. Flow stress of Nitronic-50 stainless steel over a wide range of strain rates and temperatures [J]. Mechanics of Materials, 2006, 38(11): 1090–1103. DOI: 10.1016/j.mechmat.2006.01.004.
    [50] 李玉龙, 索涛, 郭伟国, 等. 确定材料在高温高应变率下动态性能的Hopkinson杆系统 [J]. 爆炸与冲击, 2005, 25(6): 487–492. DOI: 10.11883/1001-1455(2005)06-0487-06.

    LI Y L, SUO T, GUO W G, et al. Determination of dynamic behavior of materials at elevated temperatures and high strain rates using Hopkinson bar [J]. Explosion and Shock Waves, 2005, 25(6): 487–492. DOI: 10.11883/1001-1455(2005)06-0487-06.
    [51] 林建平, 王立影, 田浩彬, 等. 超高强度钢热流变行为 [J]. 塑性工程学报, 2009, 16(2): 180–183.

    LIN J P, WANG L Y, TIAN H B, et al. Research on hot forming behavior of ultrahigh strength steel [J]. Journal of Plasticity Engineering, 2009, 16(2): 180–183.
    [52] SENKOV O N, SCOTT J M, SENKOVA S V, et al. Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy [J]. Journal of Materials Science, 2012, 47(9): 4062–4074. DOI: 10.1007/s10853-012-6260-2.
    [53] JEONG H T, PARK H K, PARK K, et al. High-temperature deformation mechanisms and processing maps of equiatomic CoCrFeMnNi high-entropy alloy [J]. Materials Science and Engineering: A, 2019, 756: 528–537. DOI: 10.1016/j.msea.2019.04.057.
    [54] ZHAO Y L, YANG T, LI Y R, et al. Superior high-temperature properties and deformation-induced planar faults in a novel L12-strengthened high-entropy alloy [J]. Acta Materialia, 2020, 188: 517–527. DOI: 10.1016/j.actamat.2020.02.028.
    [55] 李春玲, 马跃, 郝家苗, 等. 难熔高熵合金的研究进展及应用 [J]. 精密成形工程, 2017, 9(6): 117–124. DOI: 10.3969/j.issn.1674-6457.2017.06.022.

    LI C L, MA Y, HAO J M, et al. Research progress and application of refractory high entropy alloys [J]. Journal of Netshape Forming Engineering, 2017, 9(6): 117–124. DOI: 10.3969/j.issn.1674-6457.2017.06.022.
    [56] 张周然. HfZrTiTax高熵合金含能结构材料的组织结构与力学性能研究[D]. 长沙: 国防科技大学, 2017: 80−85.

    ZHANG Z R. Microstructure and mechanical properties of HfZrTiTax high-entropy alloys energetic structural materials [D]. Changsha: National University of Defense Technology, 2017: 80−85.
    [57] 陈海华, 张先锋, 熊玮, 等. WFeNiMo高熵合金动态力学行为及侵彻性能研究 [J]. 力学学报, 2020, 52(5): 1443–1453. DOI: 10.6052/0459-1879-20-166.

    CHEN H H, ZHANG X F, XIONG W, et al. Dynamic mechanical behavior and penetration performance [J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1443–1453. DOI: 10.6052/0459-1879-20-166.
    [58] LIU X F, TIAN Z L, ZHANG X F, et al. “Self-sharpening” tungsten high-entropy alloy [J]. Acta Materialia, 2020, 186: 257–266. DOI: 10.1016/j.actamat.2020.01.005.
    [59] CHERECHEŞ T, LIXANDRU P, GEANTĂ V, et al. Layered structures analysis, with high entropy alloys, for ballistic protection [J]. Applied Mechanics and Materials, 2015, 809/810: 724–729. DOI: 10.4028/www.scientific.net/AMM.809-810.724.
    [60] GEANTĂ V, VOICULESCU I, STEFĂNOIU R, et al. Dynamic impact behaviour of high entropy alloys used in the military domain [J]. IOP Conference Series: Materials Science and Engineering, 2018, 374: 012041. DOI: 10.1088/1757-899X/374/1/012041.
    [61] MUSKERI S, CHOUDHURI D, JANNOTTI P A, et al. Ballistic impact response of Al0.1CoCrFeNi high-entropy alloy [J]. Advanced Engineering Materials, 2020, 22(6): 2000124. DOI: 10.1002/adem.202000124.
  • 加载中
图(38)
计量
  • 文章访问数:  1860
  • HTML全文浏览量:  890
  • PDF下载量:  297
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-11
  • 修回日期:  2021-01-21
  • 网络出版日期:  2021-04-14
  • 刊出日期:  2021-04-14

目录

    /

    返回文章
    返回