冲击下混凝土试样应变率效应和惯性效应探讨

袁良柱 苗春贺 单俊芳 王鹏飞 徐松林

袁良柱, 苗春贺, 单俊芳, 王鹏飞, 徐松林. 冲击下混凝土试样应变率效应和惯性效应探讨[J]. 爆炸与冲击, 2022, 42(1): 013101. doi: 10.11883/bzycj-2021-0114
引用本文: 袁良柱, 苗春贺, 单俊芳, 王鹏飞, 徐松林. 冲击下混凝土试样应变率效应和惯性效应探讨[J]. 爆炸与冲击, 2022, 42(1): 013101. doi: 10.11883/bzycj-2021-0114
YUAN Liangzhu, MIAO Chunhe, SHAN Junfang, WANG Pengfei, XU Songlin. On strain-rate and inertia effects of concrete samples under impact[J]. Explosion And Shock Waves, 2022, 42(1): 013101. doi: 10.11883/bzycj-2021-0114
Citation: YUAN Liangzhu, MIAO Chunhe, SHAN Junfang, WANG Pengfei, XU Songlin. On strain-rate and inertia effects of concrete samples under impact[J]. Explosion And Shock Waves, 2022, 42(1): 013101. doi: 10.11883/bzycj-2021-0114

冲击下混凝土试样应变率效应和惯性效应探讨

doi: 10.11883/bzycj-2021-0114
基金项目: 国家自然科学基金(11672286,11872361);中央高校基本科研业务费专项(WK2480000008);中石油与中科院重大战略合作项目(2015A-4812);高压物理与地震科技联合实验室开放基金(2019HPPES01)
详细信息
    作者简介:

    袁良柱(1998- ),男,硕士,ylzustcedu@mail.ustc.edu.cn

    通讯作者:

    徐松林(1971- ),男,博士,研究员,博士生导师,slxu99@ustc.edu.cn

  • 中图分类号: O382

On strain-rate and inertia effects of concrete samples under impact

  • 摘要: 结合混凝土试件的真三轴静载冲击实验结果,分别运用考虑应变率效应的Holmquist-Johnson-Cook (HJC)模型和考虑静水压效应的Drucker-Prager (DP)模型进行数值分析,以探讨研究混凝土试样应变率效应和惯性效应的方法。在探究混凝土的应变率效应和横向惯性效应的关系时,使用HJC模型的数值模拟结果来拟合DP准则的各个参数。结果表明:随着应变率的升高,混凝土的强度会提高,并且这种强度的提高,也有一部分原因是第一应力不变量I1的增大所导致的。因此,混凝土试件的应变率效应和横向惯性约束具有较强的耦合作用。理论和数值分析了冲击下试样内部的横向应力分布特征与应变率、静水压和试样尺寸的关系,结果发现:试样内部横向应力的幅值随着应变率、静水压的升高而增大,但随着试样尺寸的增大而减小。为了探讨横向惯性带来的强度提升效果,提出了一个有关冲击方向最大应力σx和等效应力σe的参数ξ,且ξ=(σxσe)/σx。此参数具有尺寸效应、应变率效应和静水压效应,但是此参数与应力三轴度的关系表现出应变率无关特性,可为应变率效应的研究提供新的思路。
  • 图  1  真三轴静载混凝土冲击实验设备

    Figure  1.  The experimental device for concrete specimens under true tri-axial confinement

    图  2  有限元计算模型

    Figure  2.  The finite element calculation model

    图  3  数值模拟波形

    Figure  3.  Simulated wave profiles in three directions

    图  4  不同侧限条件下混凝土试样的破坏形态

    Figure  4.  Failure patterns of concrete samples under different confinement conditions

    图  5  2种模型模拟得到的应力-应变关系

    Figure  5.  Stress-strain relations simulated by two strength models

    图  6  不同应变速率下$\sqrt {{J_2}} \text{-} {I_1}$平面的强度统计

    Figure  6.  Statistics of the strength in the $\sqrt {{J_2}} \text{-} {I_1}$ plane at different strain rates

    图  7  计算强度参数的应变率效应

    Figure  7.  Strain rate effect of simulated strength parameters

    图  8  横向应力分布

    Figure  8.  Distribution of the transverse stress

    图  9  σxσy的分布

    Figure  9.  Distributions of σx and σy

    图  10  ξ的应变率效应

    Figure  10.  Strain rate effect of ξ

    图  11  主应力空间

    Figure  11.  The space of principal stresses

    图  12  ξη的关系

    Figure  12.  Relationship between ξ and stress triaxiality η

    表  1  混凝土HJC本构模型参数[20-23]

    Table  1.   Parameters of the HJC model for cement mortar[20-23]

    ρ0/(kg·m−3)G/GPaABCN$ f' $/MPa
    2 44014.8750.691.500.0070.6148
    T/MPa$ {\dot \varepsilon _0}/{{\text{s}}^{ - 1}} $εf,minSmaxpc/MPaμcpl/MPa
    410.017594.30.03800
    μlD1D2K1K2K3
    0.10.04185−171208
    下载: 导出CSV

    表  2  混凝土DP模型参数

    Table  2.   Parameters of the DP model for cement mortar

    ρ0/(kg·m−3)E/GPaνconϕ/(o)kψ/(o)
    244035.70.3300.7830
    下载: 导出CSV
  • [1] 胡时胜, 王礼立, 宋力, 等. Hopkinson压杆技术在中国的发展回顾 [J]. 爆炸与冲击, 2014, 34(6): 641–657. DOI: 10.11883/1001-1455(2014)06-0641-17.

    HU S S, WANG L L, SONG L, et al. Review of the development of Hopkinson pressure bar technique in China [J]. Explosion and Shock Waves, 2014, 34(6): 641–657. DOI: 10.11883/1001-1455(2014)06-0641-17.
    [2] 徐松林, 单俊芳, 王鹏飞. 脆性材料高应变率压缩失效机制综述与研究进展 [J]. 现代应用物理, 2020, 11(3): 30101. DOI: 10.12061/j.issn.2095-6223.2020.030101.

    XU S L, SHAN J F, WANG P F. Review and research progress of dynamic failure mechanism for brittle materials under high strain rate [J]. Modern Applied Physics, 2020, 11(3): 30101. DOI: 10.12061/j.issn.2095-6223.2020.030101.
    [3] TANG Z P, XU S L, DAI X Y, et al. S-wave tracing technique to investigate the damage and failure behavior of brittle materials subjected to shock loading [J]. International Journal of Impact Engineering, 2005, 31(9): 1172–1191. DOI: 10.1016/j.ijimpeng.2004.07.005.
    [4] XU S L, HUANG J Y, WANG P F, et al. Investigation of rock material under combined compression and shear dynamic loading: an experimental technique [J]. International Journal of Impact Engineering, 2015, 86: 206–222. DOI: 10.1016/j.ijimpeng.2015.07.014.
    [5] 王礼立. 应力波基础 [M]. 2版. 北京: 国防工业出版社, 2005: 29−35.
    [6] 王鹏飞, 徐松林, 郑航, 等. 变形模式对多孔金属材料SHPB实验结果的影响 [J]. 力学学报, 2012, 44(5): 928–932. DOI: 10.6052/0459-1879-11-354.

    WANG P F, XU S L, ZHENG H, et al. Influence of deformation modes on SHPB experimental results of cellular metal [J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5): 928–932. DOI: 10.6052/0459-1879-11-354.
    [7] WANG P F, XU S L, LI Z B, et al. Experimental investigation on the strain-rate effect and inertia effect of closed-cell aluminum foam subjected to dynamic loading [J]. Materials Science and Engineering: A, 2015, 620: 253–261. DOI: 10.1016/j.msea.2014.10.026.
    [8] 徐松林, 王鹏飞, 赵坚, 等. 基于三维Hopkinson杆的混凝土动态力学性能研究 [J]. 爆炸与冲击, 2017, 37(2): 180–185. DOI: 10.11883/1001-1455(2017)02-0180-06.

    XU S L, WANG P F, ZHAO J, et al. Dynamic behavior of concrete under static triaxial loading using 3D-Hopkinson bar [J]. Explosion and Shock Waves, 2017, 37(2): 180–185. DOI: 10.11883/1001-1455(2017)02-0180-06.
    [9] 徐松林, 王鹏飞, 单俊芳, 等. 真三轴静载作用下混凝土的动态力学性能研究 [J]. 振动与冲击, 2018, 37(15): 59–67. DOI: 10.13465/j.cnki.jvs.2018.15.008.

    XU S L, WANG P F, SHAN J F, et al. Dynamic behavior of concrete under static tri-axial loadings [J]. Journal of Vibration and Shock, 2018, 37(15): 59–67. DOI: 10.13465/j.cnki.jvs.2018.15.008.
    [10] XU S L, SHAN J F, ZHANG L, et al. Dynamic compression behaviors of concrete under true triaxial confinement: an experimental technique [J]. Mechanics of Materials, 2020, 140: 103220. DOI: 10.1016/j.mechmat.2019.103220.
    [11] GROTE D L, PARK S W, ZHOU M. Dynamic behavior of concrete at high strain rates and pressures: Ⅰ: experimental characterization [J]. International Journal of Impact Engineering, 2001, 25(9): 869–886. DOI: 10.1016/S0734-743X(01)00020-3.
    [12] 高光发. 混凝土材料动态压缩强度的应变率强化规律 [J]. 高压物理学报, 2017, 31(3): 261–270. DOI: 10.11858/gywlxb.2017.03.007.

    GAO G F. Effect of strain-rate hardening on dynamic compressive strength of plain concrete [J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 261–270. DOI: 10.11858/gywlxb.2017.03.007.
    [13] LI Q M, MENG H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test [J]. International Journal of Solids and Structures, 2003, 40(2): 343–360. DOI: 10.1016/S0020-7683(02)00526-7.
    [14] MENG H, LI Q M. Correlation between the accuracy of a SHPB test and the stress uniformity based on numerical experiments [J]. International Journal of Impact Engineering, 2003, 28(5): 537–555. DOI: 10.1016/S0734-743X(02)00073-8.
    [15] MENG H, LI Q M. Modification of SHPB set-up to minimize wave dispersion and attenuation effects [J]. International Journal of Impact Engineering, 2003, 28(6): 677–696. DOI: 10.1016/S0734-743X(02)00124-0.
    [16] LI Q M, LU Y B, MENG H. Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests: Part Ⅱ: numerical simulations [J]. International Journal of Impact Engineering, 2009, 36(12): 1335–1345. DOI: 10.1016/j.ijimpeng.2009.04.010.
    [17] 杨茨, 徐松林, 易洪昇. 冲击载荷下圆环压缩变形特性研究 [J]. 振动与冲击, 2015, 34(11): 128–132,145. DOI: 10.13465/j.cnki.jvs.2015.11.023.

    YANG C, XU S L, YI H S. Deformation properties of a ring under impact loading [J]. Chinese Journal of Vibration and Shock, 2015, 34(11): 128–132,145. DOI: 10.13465/j.cnki.jvs.2015.11.023.
    [18] FORRESTAL M J, WRIGHT T W, CHEN W. The effect of radial inertia on brittle samples during the split Hopkinson pressure bar test [J]. International Journal of Impact Engineering, 2007, 34(3): 405–411. DOI: 10.1016/j.ijimpeng.2005.12.001.
    [19] FORQUIN P, GARY G, GATUINGT F. A testing technique for concrete under confinement at high rates of strain [J]. International Journal of Impact Engineering, 2008, 35(6): 425–446. DOI: 10.1016/j.ijimpeng.2007.04.007.
    [20] HOLMQUIST T J, JOHNSON G R. A computational constitutive model for concrete subjected to larger strains, high strain rates and high pressure [C]//JACKSON N, DICKERT S. 14th International Symposium on Ballistics. USA: American Defense Preparedness Association, 1995: 591−600.
    [21] BAILLY P, DELVARE F, VIAL J, et al. Dynamic behavior of an aggregate material at simultaneous high pressure and strain rate: SHPB triaxial tests [J]. International Journal of Impact Engineering, 2011, 38(2/3): 73–84. DOI: 10.1016/j.ijimpeng.2010.10.005.
    [22] ALEJANO L R, BOBET A. Drucker-prager criterion [J]. Rock Mechanics and Rock Engineering, 2012, 45(6): 995–999. DOI: 10.1007/s00603-012-0278-2.
    [23] 苗春贺, 陈丽娜, 单俊芳, 等. 水泥砂浆抗弹性能研究 [J]. 高压物理学报, 2021, 35(2): 024205. DOI: 10.11858/gywlxb.20200609.

    MIAO C H, CHEN L N, SHAN J F, et al. Research on the ballistic performance of cement mortar [J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024205. DOI: 10.11858/gywlxb.20200609.
    [24] 刘孝敏, 胡时胜. 大直径SHPB弥散效应的二维数值分析 [J]. 实验力学, 2000, 15(4): 371–376. DOI: 10.3969/j.issn.1001-4888.2000.04.003.

    LIU X M, HU S S. Two-dimensional numerical analysis for the dispersion of stress waves in large-diameter-SHPB [J]. Journal of Experimental Mechanics, 2000, 15(4): 371–376. DOI: 10.3969/j.issn.1001-4888.2000.04.003.
    [25] BAI Y L, TENG X Q, WIERZBICKI T. On the application of stress triaxiality formula for plane strain fracture testing [J]. Journal of Engineering Materials and Technology, 2009, 131(2): 021002. DOI: 10.1115/1.3078390.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  541
  • HTML全文浏览量:  827
  • PDF下载量:  191
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-01
  • 修回日期:  2021-06-02
  • 网络出版日期:  2021-12-02
  • 刊出日期:  2022-01-20

目录

    /

    返回文章
    返回