弹体斜侵彻双层钢板的结构响应和失效研究

朱超 张晓伟 张庆明 张陶

朱超, 张晓伟, 张庆明, 张陶. 弹体斜侵彻双层钢板的结构响应和失效研究[J]. 爆炸与冲击, 2023, 43(9): 091408. doi: 10.11883/bzycj-2023-0017
引用本文: 朱超, 张晓伟, 张庆明, 张陶. 弹体斜侵彻双层钢板的结构响应和失效研究[J]. 爆炸与冲击, 2023, 43(9): 091408. doi: 10.11883/bzycj-2023-0017
ZHU Chao, ZHANG Xiaowei, ZHANG Qingming, ZHANG Tao. Structural response and failure of projectiles obliquely penetrating into double-layered steel plate targets[J]. Explosion And Shock Waves, 2023, 43(9): 091408. doi: 10.11883/bzycj-2023-0017
Citation: ZHU Chao, ZHANG Xiaowei, ZHANG Qingming, ZHANG Tao. Structural response and failure of projectiles obliquely penetrating into double-layered steel plate targets[J]. Explosion And Shock Waves, 2023, 43(9): 091408. doi: 10.11883/bzycj-2023-0017

弹体斜侵彻双层钢板的结构响应和失效研究

doi: 10.11883/bzycj-2023-0017
基金项目: 基础加强重点项目(2020-JCJQ-ZD-221-03)
详细信息
    作者简介:

    朱 超(1998- ),男,硕士研究生,zhuchao98@bit.edu.cn

    通讯作者:

    张晓伟(1982- ),男,博士,副教授,mezhangxw@bit.edu.cn

  • 中图分类号: O385

Structural response and failure of projectiles obliquely penetrating into double-layered steel plate targets

  • 摘要: 为探究弹体斜侵彻多层钢板的结构响应及失效规律,开展了圆形、椭圆和非对称椭圆三种截面弹体对双层钢板的斜侵彻试验,获得了不同弹体的弹道特性和结构失效情况。在此基础上,采用有限元软件对弹体斜侵彻过程的弹道特性、动态载荷以及结构响应进行了数值分析。基于空间自由梁理论和弹体动态载荷,给出了侵彻过程中弹体轴力和弯矩的分布规律,建立了弹体结构强度与失效分析方法。结果表明,弹体以正着角水平侵彻多层钢板时,存在一个临界攻角;当攻角小于临界值时,侵彻过程中会出现弹体低头、弹道向下偏转的现象;当攻角大于临界值时,则出现弹体抬头、弹道向上偏转的现象;该临界攻角随着靶板厚度的减小而增大。对于强度高、韧性低的弹体,失效模式为脆性断裂,断裂位置距头部0.72~0.81倍弹长,弹身后部所受横向冲击载荷是造成弹体断裂的主要原因。建立的弹体结构响应模型可准确预测弹体断裂失效及发生位置。此外,在三种截面弹体中,非对称椭圆弹体的断裂位置更接近头部。
  • 图  1  弹体结构参数示意图

    Figure  1.  Schematic diagram of projectile structural parameters

    图  2  加工后的三种截面弹体

    Figure  2.  Three types of projectiles after manufacture

    图  3  弹体材料的准静态拉伸曲线

    Figure  3.  Quasi-static tensile curves of projectile material

    图  4  试验系统示意图

    Figure  4.  Schematic diagram of experimental system

    图  5  弹体侵彻过程的典型时刻

    Figure  5.  Typical moments for different projectiles during penetration process

    图  6  斜侵彻中弹体不同角度参数及截面布置示意图

    Figure  6.  Diagram for the altitude angles and cross section of the projectile in oblique penetration

    图  7  弹体的破坏情况

    Figure  7.  Damages of projectiles

    图  8  不同入射速度下弹体的载荷时程曲线

    Figure  8.  Time history curves of projectile load under different impact velocities

    图  9  弹体侵彻轨迹的对比

    Figure  9.  Comparison of simulated and experimental results on penetration trajectories

    图  10  弹体速度对比

    Figure  10.  Comparison of projectile velocities

    图  11  不同弹体的动能对比

    Figure  11.  Comparison of kinetic energies of different projectiles

    图  12  弹体姿态角对比

    Figure  12.  Comparison of projectile attitude angles

    图  13  弹体剩余长度对比

    Figure  13.  Comparison of projectile residual lengths

    图  14  弹体载荷时程曲线

    Figure  14.  Time history curves of projectile load

    图  15  弹体侵彻的不同阶段

    Figure  15.  Penetration stages of projectile

    图  16  弹体的失效模式

    Figure  16.  Failure modes of projectile

    图  17  三种弹体的姿态角对比

    Figure  17.  Comparison of attitude angle among three different projectiles

    图  18  横向载荷作用下的自由梁模型

    Figure  18.  Free-free beam model for the projectile under lateral load

    图  19  无量纲弯矩分布

    Figure  19.  Distribution of dimensionless bending moment

    图  20  移动载荷作用下弹体的屈服函数

    Figure  20.  Yield function of projectile under moving load

    表  1  三种截面弹体的结构参数

    Table  1.   Structural parameters of three projectiles with different cross-sections

    截面形状截面参数/mmL/mmh/mmm/g
    DAB
    圆形301804506.2
    椭圆形33271804509.2
    非对称椭圆形3318/91804519.5
    下载: 导出CSV

    表  2  弹体侵彻不同靶板的试验结果

    Table  2.   Penetration experimental results

    试验编号靶板编号靶板厚度/mm速度姿态角长度
    v0/(m·s−1)v1/(m·s−1)ΔE/Jθ0/(°)θ1/(°)Δθ/(°)l0/mml1/mmδ/%
    CC-11847442511012−2.64−7.56−4.9218014581
    264253887520−4.95−9.88−4.93145145100
    CC-214445413686416.1715.65−0.5218013675
    24413387520013.6811.31−2.37136136100
    CC-3186085441843214.6820.816.1318013374
    285444532268119.9527.477.52133133100
    CC-4112499409204303.150−3.15180180100
    2840934811544−2.23−13.95−11.7218010961
    EC-11848644210208−2.12−6.37−4.2518014379
    264424048037−3.23−4.85−1.62143143100
    EC-21849345394600−2.23−2.23180180100
    264534168038−3.28−8.94−5.6618013877
    AC-11848943512474−1.60−8.65−7.0518012872
    264353899476−5.44−10.75−5.31128128100
    AC-2184734299922−2.77−9.54−6.77180180100
    264293957004−7.24−13.89−6.6518013374
    下载: 导出CSV

    表  3  弹体30CrMnSiNi2A材料参数[31]

    Table  3.   Material parameters of 30CrMnSiNi2A[31]

    ρ/(g·cm−3) E/GPa v Tr/K Tm/K A/MPa B/MPa n m C $\dot\varepsilon $0/s−1 εT
    7.85 210 0.3 294 1760 1600 810 0.479 1 0.04 2.1×10−3 0.05
    下载: 导出CSV

    表  4  靶板45钢材料参数[32]

    Table  4.   Material parameters of 45 steel[32]

    ρ/(g·cm−3) E/GPa v A/MPa B/MPa n m C
    7.8 210 0.33 507 320 0.28 1.06 0.064
    Tr/K Tm/K $\dot\varepsilon $0/s−1 D1 D2 D3 D4 D5
    294 1760 1 0.1 0.76 1.57 0.005 −0.84
    下载: 导出CSV

    表  5  弹体剩余长度的不同结果对比

    Table  5.   Comparison of results on projectile residual length

    弹型试验结果数值仿真结果理论模型结果理论模型相对误差/%
    圆形0.810.780.757.41
    椭圆形0.780.750.736.42
    非对称椭圆0.720.740.711.38
    下载: 导出CSV
  • [1] FREW D J, FORRESTAL M J, HANCHAK S J. Penetration experiments with limestone targets and ogive-nose steel projectiles [J]. Journal of Applied Mechanics, 2000, 67(4): 841–845. DOI: 10.1115/1.1331283.
    [2] CHEN X W, FAN S C, LI Q M. Oblique and normal perforation of concrete targets by a rigid projectile [J]. International Journal of Impact Engineering, 2004, 30(6): 617–637. DOI: 10.1016/j.ijimpeng.2003.08.003.
    [3] LI Q M, FLORES-JOHNSON E A. Hard projectile penetration and trajectory stability [J]. International Journal of Impact Engineering, 2011, 38(10): 815–823. DOI: 10.1016/j.ijimpeng.2011.05.005.
    [4] 段卓平, 李淑睿, 马兆芳, 等. 刚性弹体斜侵彻贯穿混凝土靶的姿态偏转理论模型 [J]. 爆炸与冲击, 2019, 39(6): 063302. DOI: 10.11883/bzycj-2018-0411.

    DUAN Z P, LI S R, MA Z F, et al. Analytical model for attitude deflection of rigid projectile during oblique perforation of concrete targets [J]. Explosion and Shock Waves, 2019, 39(6): 063302. DOI: 10.11883/bzycj-2018-0411.
    [5] 闪雨. 弹体非正侵彻混凝土质量侵蚀与运动轨迹研究 [D]. 北京: 北京理工大学, 2015.

    SHAN Y. Investigation on the mass abrasion and motion of the projectile non-normal penetrating into concrete [D]. Beijing: Beijing Institute of Technology, 2015.
    [6] GOLDSMITH W. Non-ideal projectile impact on targets [J]. International Journal of Impact Engineering, 1999, 22(2/3): 95–395. DOI: 10.1016/S0734-743X(98)00031-1.
    [7] GUPTA N K, MADHU V. An experimental study of normal and oblique impact of hard-core projectile on single and layered plates [J]. International Journal of Impact Engineering, 1997, 19(5/6): 395–414. DOI: 10.1016/S0734-743X(97)00001-8.
    [8] IQBAL M A, DIWAKAR A, RAJPUT A, et al. Influence of projectile shape and incidence angle on the ballistic limit and failure mechanism of thick steel plates [J]. Theoretical and Applied Fracture Mechanics, 2012, 62: 40–53. DOI: 10.1016/j.tafmec.2013.01.005.
    [9] IQBAL M A, SENTHIL K, MADHU V, et al. Oblique impact on single, layered and spaced mild steel targets by 7.62 AP projectiles [J]. International Journal of Impact Engineering, 2017, 110: 26–38. DOI: 10.1016/j.ijimpeng.2017.04.011.
    [10] 杜华池, 张先锋, 刘闯, 等. 弹体斜侵彻多层间隔钢靶的弹道特性 [J]. 兵工学报, 2021, 42(6): 1204–1214. DOI: 10.3969/j.issn.1000-1093.2021.06.010.

    DU H C, ZHANG X F, LIU C, et al. Trajectory characteristics of projectile obliquely penetrating into steel target with multi-layer space structure [J]. Acta Armamentarii, 2021, 42(6): 1204–1214. DOI: 10.3969/j.issn.1000-1093.2021.06.010.
    [11] 王文杰, 张先锋, 邓佳杰, 等. 椭圆截面弹体侵彻砂浆靶规律分析 [J]. 爆炸与冲击, 2018, 38(1): 164–173. DOI: 10.11883/bzycj-2017-0020.

    WANG W J, ZHANG X F, DENG J J, et al. Analysis of projectile penetrating into mortar target with elliptical cross-section [J]. Explosion and Shock Waves, 2018, 38(1): 164–173. DOI: 10.11883/bzycj-2017-0020.
    [12] DONG H, LIU Z H, WU H J, et al. Study on penetration characteristics of high-speed elliptical cross-sectional projectiles into concrete [J]. International Journal of Impact Engineering, 2019, 132: 103311. DOI: 10.1016/j.ijimpeng.2019.05.025.
    [13] 刘子豪. 椭圆截面异型弹体高速侵彻混凝土特性研究 [D]. 北京: 北京理工大学, 2018. DOI: 10.26948/d.cnki.gbjlu.2018.000438.

    LIU Z H. Study on the characteristics of high-speed elliptical cross section projectile penetrating into concrete [D]. Beijing: Beijing Institute of Technology, 2018. DOI: 10.26948/d.cnki.gbjlu.2018.000438.
    [14] DAI X H, WANG K H, LI M R, et al. Rigid elliptical cross-section ogive-nose projectiles penetration into concrete targets [J]. Defence Technology, 2021, 17(3): 800–811. DOI: 10.1016/j.dt.2020.05.011.
    [15] 王浩, 武海军, 闫雷, 等. 椭圆横截面弹体斜贯穿双层间隔薄钢板失效模式 [J]. 兵工学报, 2020, 41(S2): 1–11.

    WANG H, WU H J, YAN L, et al. Failure mode of oblique perforation of truncated ogive-nosed projectiles with elliptic cross-section into double-layered thin steel plate with gap space [J]. Acta Armamentarii, 2020, 41(S2): 1–11.
    [16] 田泽, 王浩, 武海军, 等. 椭圆变截面弹体斜贯穿薄靶姿态偏转机理 [J]. 兵工学报, 2022, 43(7): 1537–1552. DOI: 10.12382/bgxb.2021.0367.

    TIAN Z, WANG H, WU H J, et al. Attitude deflection mechanism of projectiles with variable elliptical cross-sections obliquely perforating thin targets [J]. Acta Armamentarii, 2022, 43(7): 1537–1552. DOI: 10.12382/bgxb.2021.0367.
    [17] 岳胜哲, 陈利, 张晓伟, 等. 非对称类椭圆截面弹体斜贯穿铝靶数值模拟研究 [J]. 兵器装备工程学报, 2022, 43(4): 127–133. DOI: 10.11809/bqzbgcxb2022.04.021.

    YUE S Z, CHEN L, ZHANG X W, et al. Numerical simulation of oblique penetration of shaped elliptical cross section projectile through aluminum target [J]. Journal of Ordnance Equipment Engineering, 2022, 43(4): 127–133. DOI: 10.11809/bqzbgcxb2022.04.021.
    [18] 王景琛, 张晓伟, 张庆明, 等. 非圆截面弹体斜侵彻薄靶的动态载荷特性研究 [J]. 兵器装备工程学报, 2023, 44(1): 127–135. DOI: 10.11809/bqzbgcxb2023.01.020.

    WANG J C, ZHANG X W, ZHANG Q M, et al. Study on dynamic load characteristics of a non-circular cross-section projectile obliquely penetrating into thin targets [J]. Journal of Ordnance Equipment Engineering, 2023, 44(1): 127–135. DOI: 10.11809/bqzbgcxb2023.01.020.
    [19] WU H J, WANG Y N, HUANG F L. Penetration concrete targets experiments with non-ideal & high velocity between 800 and 1100 m/s [J]. International Journal of Modern Physics B, 2008, 22(09N11): 1087–1093. DOI: 10.1142/S0217979208046360.
    [20] SILLING S A, FORRESTAL M J. Mass loss from abrasion on ogive-nose steel projectiles that penetrate concrete targets [J]. International Journal of Impact Engineering, 2007, 34(11): 1814–1820. DOI: 10.1016/j.ijimpeng.2006.10.008.
    [21] 何翔, 徐翔云, 孙桂娟, 等. 弹体高速侵彻混凝土的效应实验 [J]. 爆炸与冲击, 2010, 30(1): 1–6. DOI: 10.11883/1001-1455(2010)01-0001-06.

    HE X, XU X Y, SUN G J, et al. Experimental investigation on projectiles’ high-velocity penetration into concrete targets [J]. Explosion and Shock Waves, 2010, 30(1): 1–6. DOI: 10.11883/1001-1455(2010)01-0001-06.
    [22] 武海军, 黄风雷, 王一楠, 等. 高速侵彻混凝土弹体头部侵蚀终点效应实验研究 [J]. 兵工学报, 2012, 33(1): 48–55.

    WU H J, HUANG F L, WANG Y N, et al. Experimental investigation on projectile nose eroding effect of high-velocity penetration into concrete [J]. Acta Armamentarii, 2012, 33(1): 48–55.
    [23] HE L L, CHEN X W. Analyses of the penetration process considering mass loss [J]. European Journal of Mechanics-A/Solids, 2011, 30(2): 145–157. DOI: 10.1016/j.euromechsol.2010.10.004.
    [24] ZHAO J, CHEN X W, JIN F N, et al. Analysis on the bending of a projectile induced by asymmetrical mass abrasion [J]. International Journal of Impact Engineering, 2012, 39(1): 16–27. DOI: 10.1016/j.ijimpeng.2011.09.001.
    [25] 陈小伟. 动能深侵彻弹的力学设计(Ⅰ): 侵彻/穿甲理论和弹体壁厚分析 [J]. 爆炸与冲击, 2005, 25(6): 499–505. DOI: 10.11883/1001-1455(2005)06-0499-07.

    CHEN X W. Mechanics of structural design of EPW(Ⅰ): the penetration/perforation theory and the analysis on the cartridge of projectile [J]. Explosion and Shock Waves, 2005, 25(6): 499–505. DOI: 10.11883/1001-1455(2005)06-0499-07.
    [26] 陈小伟, 金建明. 动能深侵彻弹的力学设计(Ⅱ): 弹靶的相关力学分析与实例 [J]. 爆炸与冲击, 2006, 26(1): 71–78. DOI: 10.11883/1001-1455(2006)01-0071-08.

    CHEN X W, JIN J M. Mechanics of structural design of EPW(Ⅱ): analyses on the design of EPW projectiles, concrete targets and examples [J]. Explosion and Shock Waves, 2006, 26(1): 71–78. DOI: 10.11883/1001-1455(2006)01-0071-08.
    [27] 皮爱国, 黄风雷. 大长细比弹体斜侵彻混凝土靶的动力学响应 [J]. 爆炸与冲击, 2007, 27(4): 331–338. DOI: 10.11883/1001-1455(2007)04-0331-08.

    PI A G, HUANG F L. Dynamic behavior of a slender projectile on oblique penetrating into concrete target [J]. Explosion and Shock Waves, 2007, 27(4): 331–338. DOI: 10.11883/1001-1455(2007)04-0331-08.
    [28] 王一楠, 黄风雷, 段卓平. 小攻角条件下动能弹体高速侵彻混凝土靶的弹体弯曲 [J]. 爆炸与冲击, 2010, 30(6): 598–606. DOI: 10.11883/1001-1455(2010)06-0598-09.

    WANG Y N, HUANG F L, DUAN Z P. Bending of projectile with small angle of attack during high-speed penetration of concrete targets [J]. Explosion and Shock Waves, 2010, 30(6): 598–606. DOI: 10.11883/1001-1455(2010)06-0598-09.
    [29] 张欣欣, 武海军, 黄风雷, 等. 斜侵彻混凝土靶的刻槽弹体的结构响应 [J]. 爆炸与冲击, 2019, 39(3): 033301. DOI: 10.11883/bzycj-2017-0047.

    ZHANG X X, WU H J, HUANG F L, et al. Structural response of the concrete target obliquely penetrated by a grooved-tapered projectile [J]. Explosion and Shock Waves, 2019, 39(3): 033301. DOI: 10.11883/bzycj-2017-0047.
    [30] 刘坚成, 张雷雷, 徐坤, 等. 反弹道非正侵彻的弹体结构响应实验研究 [J]. 兵工学报, 2019, 40(9): 1797–1803. DOI: 10.3969/j.issn.1000-1093.2019.09.005.

    LIU J C, ZHANG L L, XU K, et al. Structural response of projectile in reverse ballistic non-normal penetrating experiment [J]. Acta Armamentarii, 2019, 40(9): 1797–1803. DOI: 10.3969/j.issn.1000-1093.2019.09.005.
    [31] 李磊, 张先锋, 吴雪, 等. 不同硬度30CrMnSiNi2A钢的动态本构与损伤参数 [J]. 高压物理学报, 2017, 31(3): 239–248. DOI: 10.11858/gywlxb.2017.03.005.

    LI L, ZHANG X F, WU X, et al. Dynamic constitutive and damage parameters of 30CrMnSiNi2A steel with different hardnesses [J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 239–248. DOI: 10.11858/gywlxb.2017.03.005.
    [32] CHEN G, CHEN X W, CHEN Z F, et al. Simulations of A3 steel blunt projectiles impacting 45 steel plates [J]. Explosion and Shock Waves, 2007, 27(5): 390–397. DOI: 10.11883/1001-1455(2007)05-0390-08.
  • 加载中
图(20) / 表(5)
计量
  • 文章访问数:  401
  • HTML全文浏览量:  116
  • PDF下载量:  242
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-17
  • 修回日期:  2023-05-09
  • 网络出版日期:  2023-06-02
  • 刊出日期:  2023-09-11

目录

    /

    返回文章
    返回