结构变形对深侵彻弹体偏转的影响

何丽灵 郭虎 陈小伟 颜怡霞 李继承 陈刚

何丽灵, 郭虎, 陈小伟, 颜怡霞, 李继承, 陈刚. 结构变形对深侵彻弹体偏转的影响[J]. 爆炸与冲击, 2023, 43(9): 091404. doi: 10.11883/bzycj-2023-0068
引用本文: 何丽灵, 郭虎, 陈小伟, 颜怡霞, 李继承, 陈刚. 结构变形对深侵彻弹体偏转的影响[J]. 爆炸与冲击, 2023, 43(9): 091404. doi: 10.11883/bzycj-2023-0068
HE Liling, GUO Hu, CHEN Xiaowei, YAN Yixia, LI Jicheng, CHEN Gang. Influence of structural deformation on the deflection of penetrator into concrete target with deep penetration[J]. Explosion And Shock Waves, 2023, 43(9): 091404. doi: 10.11883/bzycj-2023-0068
Citation: HE Liling, GUO Hu, CHEN Xiaowei, YAN Yixia, LI Jicheng, CHEN Gang. Influence of structural deformation on the deflection of penetrator into concrete target with deep penetration[J]. Explosion And Shock Waves, 2023, 43(9): 091404. doi: 10.11883/bzycj-2023-0068

结构变形对深侵彻弹体偏转的影响

doi: 10.11883/bzycj-2023-0068
基金项目: 国家自然科学基金(11302210);中国工程物理研究院创新与发展基金(CX20210031);四川省自然科学基金(2023NSFSC1913)
详细信息
    作者简介:

    何丽灵(1984- ),女,博士,副研究员,heliling1984@139.com

    通讯作者:

    颜怡霞(1973- ),女,硕士,研究员,13990111459@163.com

  • 中图分类号: O385

Influence of structural deformation on the deflection of penetrator into concrete target with deep penetration

  • 摘要: 钻地弹是打击地下工事的利器,弹道偏转是降低钻地弹侵彻效率的重要原因之一,弹道偏转的本质原因是弹体偏转,亟需快速且精确地预测多侵彻姿态下弹体的侵深与偏转角度。基于微分面力法,将计及有限大靶所有自由面影响的靶体响应力函数加载在弹体表面,快速模拟了弹体的运动和变形。靶体响应力函数和数值计算模型通过了试验校核。利用刚性弹与可变形弹的运动和变形的对比,剥离并分析了结构变形对弹体偏转的影响。分析显示,结构变形是可变形弹偏转的驱动源之一,其可改变弹体外力矩,并影响弹体瞬时偏转速度。相同条件下,可变形弹偏转角度大于刚性弹。随着弹体长径比减小、着靶速度降低及侵彻斜角增大,刚性弹偏转角度增大;而随着弹体长径比增大、侵彻斜角增大及弹体壁厚减小,可变形弹偏转角度增大。着靶速度对可变形弹偏转角度的影响不单调。当着靶速度不高于800 m/s、侵彻斜角不小于20°时,着靶速度越高、侵彻斜角越大、弹体长径比越大、壁厚越小,则结构变形对弹体偏转的贡献越大。为此,建议选择可变形弹分析非理想侵彻弹体的运动和变形,以提高分析精度与合理性。
  • 图  1  环氧树脂屈服后的应力-应变关系

    Figure  1.  Plastic stress-strain curve of epoxy resin

    图  2  刚性弹和可变形弹的侵深计算结果与试验结果[10]的对比

    Figure  2.  Comparison of the depth of penetration between simulation results and test results[10] of rigid and deformable projectiles

    图  3  弹体平面内转动角度计算示意图

    Figure  3.  Schematic diagram of the rotation angle of the projectile

    图  4  斜侵彻时刚性弹和可变形弹偏转角度的数值模拟结果与试验结果[10]的对比

    Figure  4.  Comparison of the rotation angle between simulation and test results[10] of rigid and deformable projectiles

    图  5  刚性弹与可变形弹的偏转角度和角速度的对比(Ⅲ-2)

    Figure  5.  Comparison of rotation angle and angular velocity between rigid and deformable projectiles (Ⅲ-2)

    图  6  刚性弹与可变形弹绕质心的转动力矩的对比(Ⅲ-2)

    Figure  6.  Comparison of moments between rigid and deformable projectiles (Ⅲ-2)

    图  7  可变形弹不同时刻的弹靶位置(Ⅲ-2)

    Figure  7.  Relative locations of the deformable projectile and target at typical times (Ⅲ-2)

    图  8  不同时刻可变形弹的形貌和塑性变形分布(Ⅲ-2)

    Figure  8.  Deformation and distribution of plastic strain of the deformable projectile at different times ( Ⅲ-2)

    图  9  刚性弹与可变形弹侵彻阻力的对比(Ⅲ-2)

    Figure  9.  Comparison of penetration resistance force between rigid and deformable projectiles (Ⅲ-2)

    图  10  刚性弹和可变形弹的偏转角度随着靶速度和侵彻斜角的变化

    Figure  10.  Variations of the rotation angles of rigid and deformable projectiles with impact velocity and oblique angle, respectively

    图  11  刚性弹和可变形弹的偏转角度随弹体结构特征的变化

    Figure  11.  Variations of the rotation angles of rigid and deformable projectiles with structural characteristics

    图  12  结构变形对偏转角度的贡献与刚性弹偏转角度之比随着靶速度与侵彻斜角的变化

    Figure  12.  Variations of the rotation ratio of rotation angle induced by structural deformation to that of the rigid projectile with impact velocity and oblique angle, respectively

    图  13  结构变形对偏转角度的贡献与刚性弹偏转角度之比随弹体结构特征的变化

    Figure  13.  Variation of the rotation ratio of rotation angle induced by structural deformation to that of the rigid projectile with structural characteristics

    表  1  弹体的特征参数与尺寸[10]

    Table  1.   Characteristic parameters and dimensions of projectiles[10]

    弹型质量/g直径/
    mm
    弹长/
    mm
    长径比质心系数转动惯量/
    (g·m2
    弹头
    曲径比
    外壳填塞体
    材料密度/
    (kg·m−3)
    厚度/mm无量纲厚度材料密度/
    (kg·m−3)
    31425.3151.860.5730.593DA67 8502.650.10环氧树脂1 650
    35925.3151.860.5710.633DA67 8503.800.15环氧树脂1 650
    41525.3202.480.5551.413DA67 8502.650.10环氧树脂1 650
    48125.3202.480.5531.543DA67 8503.800.15环氧树脂1 650
    51625.3253.0100.5452.753DA67 8502.650.10环氧树脂1 650
    60425.3253.0100.5433.063DA67 8503.800.15环氧树脂1 650
    下载: 导出CSV

    表  2  文献[10]中的弹体着靶姿态

    Table  2.   Impact conditions of projectiles in Ref. [10]

    弹型组1组2组3
    侵彻斜角/(º)着靶速度/
    (m∙s−1)
    侵彻斜角/(º)着靶速度/
    (m∙s−1)
    侵彻斜角/(º)着靶速度/
    (m∙s−1)
    设计值实际值设计值实际值设计值实际值
    007752019.68153027.9815
    007652020.07673030.6769
    007212024.07233029.4721
    006742017.06813030.1676
    006562019.06573030.1656
    006152018.06133031.6620
    下载: 导出CSV

    表  3  混凝土靶参数[10]

    Table  3.   Parameters of concrete target[10]

    密度/(kg·m−3)无约束抗压强度/MPa直径/mm最长母线长度/mm斜面角度/(º)骨料
    材料强度/MPa平均直径/mm
    2 4004564088520石灰石60~808
    下载: 导出CSV
  • [1] CHEN W X, GUO Z K, QIAN Q H, et al. Penetration depth for yaw-inducing bursting layer impacted by projectile [J]. Journal of Central South University of Technology, 2012, 19(4): 1002–1009. DOI: 10.1007/s11771-012-1103-5.
    [2] 任辉启, 穆超民, 刘瑞朝, 等. 精确制导武器侵彻效应与工程防护 [M]. 北京: 科学出版社, 2016.
    [3] GOLDSMITH W. Non-ideal projectile impact on targets [J]. International Journal of Impact Engineering, 1999, 22(2/3): 95–395. DOI: 10.1016/S0734-743X(98)00031-1.
    [4] 何丽灵, 陈小伟, 夏源明. 侵彻混凝土弹体磨蚀的若干研究进展 [J]. 兵工学报, 2010, 31(7): 950–966. DOI: 10.3969/j.issn.1000-1093.2010.07.013.

    HE L L, CHEN X W, XIA Y M. A review on the mass loss of projectile [J]. Acta Armamentarii, 2010, 31(7): 950–966. DOI: 10.3969/j.issn.1000-1093.2010.07.013.
    [5] FORRESTAL M J, FREW D, HANCHAK S. Penetration of grout and concrete targets with ogive-nose steel projectiles [J]. International Journal of Impact Engineering, 1996, 18(5): 465–476. DOI: 10.1016/0734-743X(95)00048-F.
    [6] FREW D, HANCHAK S, GREEN M. Penetration of concrete targets with ogive-nose steel rods [J]. International Journal of Impact Engineering, 1998, 21(6): 489–497. DOI: 10.1016/S0734-743X(98)00008-6.
    [7] FREW D, FORRESTAL M, HANCHAK S. Penetration experiments with limestone targets and ogive-nose steel projectiles [J]. Journal of Applied Mechanics, 2000, 67(4): 841–845. DOI: 10.1115/1.1331283.
    [8] JEROME D, TYNON R, WILSON L. Experimental observations of the stability and survivability of ogive-nosed, high-strength steel alloy projectiles in cementious materials at striking velocities from 800–1 800 m/s [C] // Proceedings of the 3rd Joint Classified Ballistics Symposium. San Diego, USA, 2000.
    [9] 初哲, 周刚, 杨黔龙, 等. 一种强力钻地弹侵彻混凝土靶研究 [J]. 爆炸与冲击, 2004, 24(2): 115–121.

    CHU Z, ZHOU G, YANG Q, et al. Study of the robust earth penetrator penetrating concrete target [J]. Explosion and Shock Waves, 2004, 24(2): 115–121.
    [10] 陈小伟, 张方举, 杨世全, 等. 动能深侵彻弹的力学设计(Ⅲ): 缩比实验分析 [J]. 爆炸与冲击, 2006, 26(2): 105–114. DOI: 10.11883/1001-1455(2006)02-0105-10.

    CHEN X W, ZHANG F J, YANG S Q, et al. Mechanics of structural design of EPW (Ⅲ): investigation on the reduced-scale tests [J]. Explosion and Shock Waves, 2006, 26(2): 105–114. DOI: 10.11883/1001-1455(2006)02-0105-10.
    [11] 何翔, 徐翔云, 孙桂娟, 等. 弹体高速侵彻混凝土效应的实验研究 [J]. 爆炸与冲击, 2010, 30(1): 1–6. DOI: 10.11883/1001-1455(2010)01-0001-06.

    HE X, XU X Y, SUN G J, et al. Experimental investigation on projectiles’ high-velocity penetration into concrete targets [J]. Explosion and Shock Waves, 2010, 30(1): 1–6. DOI: 10.11883/1001-1455(2010)01-0001-06.
    [12] MU Z C, ZHANG W. An investigation on mass loss of ogival projectiles penetrating concrete targets [J]. International Journal of Impact Engineering, 2011, 38(8/9): 770–778. DOI: 10.1016/j.ijimpeng.2011.04.002.
    [13] 何丽灵, 陈小伟, 范瑛. 先进钻地弹高速侵彻实验中质量磨蚀金相分析 [J]. 爆炸与冲击, 2012, 32(5): 515–522. DOI: 10.11883/1001-1455(2012)05-0515-08.

    HE L L, CHEN X W, FAN Y. Metallographic observation of reduced-scale advanced EPW after high-speed penetration [J]. Explosion and Shock Waves, 2012, 32(5): 515–522. DOI: 10.11883/1001-1455(2012)05-0515-08.
    [14] 武海军, 黄风雷, 王一楠, 等. 高速侵彻混凝土弹体头部侵蚀终点效应实验研究 [J]. 兵工学报, 2012, 33(1): 48–55. DOI: 10.3969/j.issn.1000-1093.2012.01.009.

    WU H J, HUANG F L, WANG Y N, et al. Experimental investigation on projectile nose eroding effect of high-velocity penetration into concrete [J]. Acta Armamentarii, 2012, 33(1): 48–55. DOI: 10.3969/j.issn.1000-1093.2012.01.009.
    [15] 薛剑锋, 沈培辉, 王晓鸣. 高速弹体斜侵彻混凝土靶的效率分析 [J]. 兵器材料科学与工程, 2016, 39(2): 38–41. DOI: 10.14024/j.cnki.1004-244x.20160302.014.

    XUE J F, SHEN P H, WANG X M. Efficiency analysis of high-speed projectile obliquely penetrating concrete targets [J]. Ordnance Material Science and Engineering, 2016, 39(2): 38–41. DOI: 10.14024/j.cnki.1004-244x.20160302.014.
    [16] CHEN X W. Dynamics of metallic and reinforced concrete targets subjected to projectile impact [D]. Singapore: Nanyang Technological University, 2003.
    [17] SIMONOV I, OSIPENKO K. Stability, paths, and dynamic bending of a blunt body of revolution penetrating into an elastoplastic medium [J]. Journal of Applied Mechanics and Technical Physics, 2004, 45(3): 428–439. DOI: 10.1023/B:JAMT.0000025026.52832.ea.
    [18] LI Q M, FLORES-JOHNSON E A. Hard projectile penetration and trajectory stability [J]. International Journal of Impact Engineering, 2011, 38(10): 815–823. DOI: 10.1016/j.ijimpeng.2011.05.005.
    [19] PARK S, XIA Q, ZHOU M. Dynamic behavior of concrete at high strain rates and pressures:Ⅱ. numerical simulation [J]. International Journal of Impact Engineering, 2001, 25(9): 887–910. DOI: 10.1016/S0734-743X(01)00021-5.
    [20] MAN H, VAN MIER J G M. Influence of particle density on 3D size effects in the fracture of (numerical) concrete [J]. Mechanics of Materials, 2008, 40(6): 470–486. DOI: 10.1016/j.mechmat.2007.11.003.
    [21] MAN H, VAN MIER J G M. Damage distribution and size effect in numerical concrete from lattice analyses [J]. Cement & Concrete Composites, 2011, 33(9): 867–880. DOI: 10.1016/j.cemconcomp.2011.01.008.
    [22] 马爱娥, 黄风雷, 初哲, 等. 弹体攻角侵彻混凝土数值模拟 [J]. 爆炸与冲击, 2008, 28(1): 33–37. DOI: 10.11883/1001-1455(2008)01-0033-05.

    MA A E, HUANG F L, CHU Z, et al. Numerical simulation on yawed penetration into concrete [J]. Explosion and Shock Waves, 2008, 28(1): 33–37. DOI: 10.11883/1001-1455(2008)01-0033-05.
    [23] SILLING S, FORRESTAL M. Mass loss from abrasion on ogive-nose steel projectiles that penetrate concrete targets [J]. International Journal of Impact Engineering, 2007, 34(11): 1814–1820. DOI: 10.1016/j.ijimpeng.2006.10.008.
    [24] LIU Y, MA A E, HUANG F L. Numerical simulations of oblique-angle penetration by deformable projectiles into concrete targets [J]. International Journal of Impact Engineering, 2009, 36(3): 438–446. DOI: 10.1016/j.ijimpeng.2008.03.006.
    [25] LIU Y, HUANG F L, MA A E. Numerical simulations of oblique penetration into reinforced concrete targets [J]. Computers and Mathematics with Applications, 2011, 61(8): 2168–2171. DOI: 10.1016/j.camwa.2010.09.006.
    [26] BLESS S, SATAPATHY S, NORMANDIA M. Transverse loads on a yawed projectile [J]. International Journal of Impact Engineering, 1999, 23(1): 77–86. DOI: 10.1016/S0734-743X(99)00064-0.
    [27] WARREN T L. Simulations of the penetration of limestone targets by ogive-nose 4340 steel projectiles [J]. International Journal of Impact Engineering, 2002, 27(5): 475–496. DOI: 10.1016/S0734-743X(01)00154-3.
    [28] WARREN T L, POORMON K L. Penetration of 6061-T6511 aluminum targets by ogive-nosed VAR 4340 steel projectiles at oblique angles: experiments and simulations [J]. International Journal of Impact Engineering, 2001, 25(1): 993–1022. DOI: 10.1016/S0734-743X(01)00024-0.
    [29] WARREN T L, HANCHAK S J, POORMAN K L. Penetration of limestone targets by ogive-nosed VAR 4340 steel projectiles at oblique angles: experiments and simulations [J]. International Journal of Impact Engineering, 2004, 30(10): 1307–1331. DOI: 10.1016/j.ijimpeng.2003.09.047.
    [30] LONGCOPE D B, TABBARA M R, JUNG J. Modeling of oblique penetration into geologic targets using cavity expansion penetrator loading with target free-surface effects: SAND99-1104 [R]. USA: Sandia National Laboratories, 1999.
    [31] MACEK R W, DUFFEY T A. Finite cavity expansion method for near-surface effects and layering during earth penetration [J]. International Journal of Impact Engineering, 2000, 24(3): 239–258. DOI: 10.1016/S0734-743X(99)00156-6.
    [32] WEN H M, YANG Y, HE T. Effects of abrasion on the penetration of ogival-nosed projectiles into concrete targets [J]. Latin American Journal of Solids and Structures, 2010, 7(4): 413–422. DOI: 10.1590/S1679-78252010000400003.
    [33] HE L L, CHEN X W. Analyses of penetration process considering mass loss [J]. European Journal of Mechanics A: Solids, 2011, 30(2): 145–157. DOI: 10.1016/j.euromechsol.2010.10.004.
    [34] 王松川. 弹体斜侵彻弹道快速预测方法研究 [D]. 长沙: 国防科学技术大学, 2011

    WANG S C. Quick prediction method of oblique penetration trajectory [D]. Changsha, Hunan, China: National University of Defense Technology, 2011.
    [35] 何涛, 文鹤鸣. 靶体响应力函数的确定方法及其在侵彻力学中的应用 [J]. 中国科学技术大学学报, 2007, 37(10): 1249–1261. DOI: 10.3969/j.issn.0253-2778.2007.10.017.

    HE T, WEN H M. Determination of analytical forcing function of target response and its applications in penetration mechanics [J]. Journal of University of Science and Technology of China, 2007, 37(10): 1249–1261. DOI: 10.3969/j.issn.0253-2778.2007.10.017.
    [36] 郭虎, 何丽灵, 陈小伟, 等. 球形颗粒遮弹层对高速侵彻弹体的作用机理 [J]. 爆炸与冲击, 2020, 40(10): 103301. DOI: 10.11883/bzycj-2019-0428.

    GUO H, HE L L, CHEN X W, et al. Penetration mechanism of a high-speed projectile into a shelter made of spherical aggregate [J]. Explosion and Shock Waves, 2020, 40(10): 103301. DOI: 10.11883/bzycj-2019-0428.
    [37] FORRESTAL M J, LUK V K. Dynamic spherical cavity-expansion in a compressible elastic-plastic solid [J]. Journal of Applied Mechanics, 1988, 55(2): 275–279. DOI: 10.1115/1.3173672.
    [38] 张林, 张祖根, 秦晓云, 等. D6A、921和45钢的动态破坏与低压冲击特性 [J]. 高压物理学报, 2003, 17(4): 305–310. DOI: 10.11858/gywlxb.2003.04.011.

    ZHANG L, ZHANG Z G, QIN X Y, et al. Dynamic fracture and mechanical property of D6A, 921 and 45 steels under low shock pressure [J]. Chinese Journal of High Pressure Physics, 2003, 17(4): 305–310. DOI: 10.11858/gywlxb.2003.04.011.
    [39] HE L L, CHEN X W, WANG Z H. Study on the penetration performance of concept projectile for high-speed penetration (CPHP) [J]. International Journal of Impact Engineering, 2016, 94: 1–12. DOI: 10.1016/j.ijimpeng.2016.03.010.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  189
  • HTML全文浏览量:  90
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-28
  • 录用日期:  2023-07-04
  • 修回日期:  2023-06-24
  • 网络出版日期:  2023-07-13
  • 刊出日期:  2023-09-11

目录

    /

    返回文章
    返回