[1] |
CHEN W X, GUO Z K, QIAN Q H, et al. Penetration depth for yaw-inducing bursting layer impacted by projectile [J]. Journal of Central South University of Technology, 2012, 19(4): 1002–1009. DOI: 10.1007/s11771-012-1103-5.
|
[2] |
任辉启, 穆超民, 刘瑞朝, 等. 精确制导武器侵彻效应与工程防护 [M]. 北京: 科学出版社, 2016.
|
[3] |
GOLDSMITH W. Non-ideal projectile impact on targets [J]. International Journal of Impact Engineering, 1999, 22(2/3): 95–395. DOI: 10.1016/S0734-743X(98)00031-1.
|
[4] |
何丽灵, 陈小伟, 夏源明. 侵彻混凝土弹体磨蚀的若干研究进展 [J]. 兵工学报, 2010, 31(7): 950–966. DOI: 10.3969/j.issn.1000-1093.2010.07.013.HE L L, CHEN X W, XIA Y M. A review on the mass loss of projectile [J]. Acta Armamentarii, 2010, 31(7): 950–966. DOI: 10.3969/j.issn.1000-1093.2010.07.013.
|
[5] |
FORRESTAL M J, FREW D, HANCHAK S. Penetration of grout and concrete targets with ogive-nose steel projectiles [J]. International Journal of Impact Engineering, 1996, 18(5): 465–476. DOI: 10.1016/0734-743X(95)00048-F.
|
[6] |
FREW D, HANCHAK S, GREEN M. Penetration of concrete targets with ogive-nose steel rods [J]. International Journal of Impact Engineering, 1998, 21(6): 489–497. DOI: 10.1016/S0734-743X(98)00008-6.
|
[7] |
FREW D, FORRESTAL M, HANCHAK S. Penetration experiments with limestone targets and ogive-nose steel projectiles [J]. Journal of Applied Mechanics, 2000, 67(4): 841–845. DOI: 10.1115/1.1331283.
|
[8] |
JEROME D, TYNON R, WILSON L. Experimental observations of the stability and survivability of ogive-nosed, high-strength steel alloy projectiles in cementious materials at striking velocities from 800–1 800 m/s [C] // Proceedings of the 3rd Joint Classified Ballistics Symposium. San Diego, USA, 2000.
|
[9] |
初哲, 周刚, 杨黔龙, 等. 一种强力钻地弹侵彻混凝土靶研究 [J]. 爆炸与冲击, 2004, 24(2): 115–121.CHU Z, ZHOU G, YANG Q, et al. Study of the robust earth penetrator penetrating concrete target [J]. Explosion and Shock Waves, 2004, 24(2): 115–121.
|
[10] |
陈小伟, 张方举, 杨世全, 等. 动能深侵彻弹的力学设计(Ⅲ): 缩比实验分析 [J]. 爆炸与冲击, 2006, 26(2): 105–114. DOI: 10.11883/1001-1455(2006)02-0105-10.CHEN X W, ZHANG F J, YANG S Q, et al. Mechanics of structural design of EPW (Ⅲ): investigation on the reduced-scale tests [J]. Explosion and Shock Waves, 2006, 26(2): 105–114. DOI: 10.11883/1001-1455(2006)02-0105-10.
|
[11] |
何翔, 徐翔云, 孙桂娟, 等. 弹体高速侵彻混凝土效应的实验研究 [J]. 爆炸与冲击, 2010, 30(1): 1–6. DOI: 10.11883/1001-1455(2010)01-0001-06.HE X, XU X Y, SUN G J, et al. Experimental investigation on projectiles’ high-velocity penetration into concrete targets [J]. Explosion and Shock Waves, 2010, 30(1): 1–6. DOI: 10.11883/1001-1455(2010)01-0001-06.
|
[12] |
MU Z C, ZHANG W. An investigation on mass loss of ogival projectiles penetrating concrete targets [J]. International Journal of Impact Engineering, 2011, 38(8/9): 770–778. DOI: 10.1016/j.ijimpeng.2011.04.002.
|
[13] |
何丽灵, 陈小伟, 范瑛. 先进钻地弹高速侵彻实验中质量磨蚀金相分析 [J]. 爆炸与冲击, 2012, 32(5): 515–522. DOI: 10.11883/1001-1455(2012)05-0515-08.HE L L, CHEN X W, FAN Y. Metallographic observation of reduced-scale advanced EPW after high-speed penetration [J]. Explosion and Shock Waves, 2012, 32(5): 515–522. DOI: 10.11883/1001-1455(2012)05-0515-08.
|
[14] |
武海军, 黄风雷, 王一楠, 等. 高速侵彻混凝土弹体头部侵蚀终点效应实验研究 [J]. 兵工学报, 2012, 33(1): 48–55. DOI: 10.3969/j.issn.1000-1093.2012.01.009.WU H J, HUANG F L, WANG Y N, et al. Experimental investigation on projectile nose eroding effect of high-velocity penetration into concrete [J]. Acta Armamentarii, 2012, 33(1): 48–55. DOI: 10.3969/j.issn.1000-1093.2012.01.009.
|
[15] |
薛剑锋, 沈培辉, 王晓鸣. 高速弹体斜侵彻混凝土靶的效率分析 [J]. 兵器材料科学与工程, 2016, 39(2): 38–41. DOI: 10.14024/j.cnki.1004-244x.20160302.014.XUE J F, SHEN P H, WANG X M. Efficiency analysis of high-speed projectile obliquely penetrating concrete targets [J]. Ordnance Material Science and Engineering, 2016, 39(2): 38–41. DOI: 10.14024/j.cnki.1004-244x.20160302.014.
|
[16] |
CHEN X W. Dynamics of metallic and reinforced concrete targets subjected to projectile impact [D]. Singapore: Nanyang Technological University, 2003.
|
[17] |
SIMONOV I, OSIPENKO K. Stability, paths, and dynamic bending of a blunt body of revolution penetrating into an elastoplastic medium [J]. Journal of Applied Mechanics and Technical Physics, 2004, 45(3): 428–439. DOI: 10.1023/B:JAMT.0000025026.52832.ea.
|
[18] |
LI Q M, FLORES-JOHNSON E A. Hard projectile penetration and trajectory stability [J]. International Journal of Impact Engineering, 2011, 38(10): 815–823. DOI: 10.1016/j.ijimpeng.2011.05.005.
|
[19] |
PARK S, XIA Q, ZHOU M. Dynamic behavior of concrete at high strain rates and pressures:Ⅱ. numerical simulation [J]. International Journal of Impact Engineering, 2001, 25(9): 887–910. DOI: 10.1016/S0734-743X(01)00021-5.
|
[20] |
MAN H, VAN MIER J G M. Influence of particle density on 3D size effects in the fracture of (numerical) concrete [J]. Mechanics of Materials, 2008, 40(6): 470–486. DOI: 10.1016/j.mechmat.2007.11.003.
|
[21] |
MAN H, VAN MIER J G M. Damage distribution and size effect in numerical concrete from lattice analyses [J]. Cement & Concrete Composites, 2011, 33(9): 867–880. DOI: 10.1016/j.cemconcomp.2011.01.008.
|
[22] |
马爱娥, 黄风雷, 初哲, 等. 弹体攻角侵彻混凝土数值模拟 [J]. 爆炸与冲击, 2008, 28(1): 33–37. DOI: 10.11883/1001-1455(2008)01-0033-05.MA A E, HUANG F L, CHU Z, et al. Numerical simulation on yawed penetration into concrete [J]. Explosion and Shock Waves, 2008, 28(1): 33–37. DOI: 10.11883/1001-1455(2008)01-0033-05.
|
[23] |
SILLING S, FORRESTAL M. Mass loss from abrasion on ogive-nose steel projectiles that penetrate concrete targets [J]. International Journal of Impact Engineering, 2007, 34(11): 1814–1820. DOI: 10.1016/j.ijimpeng.2006.10.008.
|
[24] |
LIU Y, MA A E, HUANG F L. Numerical simulations of oblique-angle penetration by deformable projectiles into concrete targets [J]. International Journal of Impact Engineering, 2009, 36(3): 438–446. DOI: 10.1016/j.ijimpeng.2008.03.006.
|
[25] |
LIU Y, HUANG F L, MA A E. Numerical simulations of oblique penetration into reinforced concrete targets [J]. Computers and Mathematics with Applications, 2011, 61(8): 2168–2171. DOI: 10.1016/j.camwa.2010.09.006.
|
[26] |
BLESS S, SATAPATHY S, NORMANDIA M. Transverse loads on a yawed projectile [J]. International Journal of Impact Engineering, 1999, 23(1): 77–86. DOI: 10.1016/S0734-743X(99)00064-0.
|
[27] |
WARREN T L. Simulations of the penetration of limestone targets by ogive-nose 4340 steel projectiles [J]. International Journal of Impact Engineering, 2002, 27(5): 475–496. DOI: 10.1016/S0734-743X(01)00154-3.
|
[28] |
WARREN T L, POORMON K L. Penetration of 6061-T6511 aluminum targets by ogive-nosed VAR 4340 steel projectiles at oblique angles: experiments and simulations [J]. International Journal of Impact Engineering, 2001, 25(1): 993–1022. DOI: 10.1016/S0734-743X(01)00024-0.
|
[29] |
WARREN T L, HANCHAK S J, POORMAN K L. Penetration of limestone targets by ogive-nosed VAR 4340 steel projectiles at oblique angles: experiments and simulations [J]. International Journal of Impact Engineering, 2004, 30(10): 1307–1331. DOI: 10.1016/j.ijimpeng.2003.09.047.
|
[30] |
LONGCOPE D B, TABBARA M R, JUNG J. Modeling of oblique penetration into geologic targets using cavity expansion penetrator loading with target free-surface effects: SAND99-1104 [R]. USA: Sandia National Laboratories, 1999.
|
[31] |
MACEK R W, DUFFEY T A. Finite cavity expansion method for near-surface effects and layering during earth penetration [J]. International Journal of Impact Engineering, 2000, 24(3): 239–258. DOI: 10.1016/S0734-743X(99)00156-6.
|
[32] |
WEN H M, YANG Y, HE T. Effects of abrasion on the penetration of ogival-nosed projectiles into concrete targets [J]. Latin American Journal of Solids and Structures, 2010, 7(4): 413–422. DOI: 10.1590/S1679-78252010000400003.
|
[33] |
HE L L, CHEN X W. Analyses of penetration process considering mass loss [J]. European Journal of Mechanics A: Solids, 2011, 30(2): 145–157. DOI: 10.1016/j.euromechsol.2010.10.004.
|
[34] |
王松川. 弹体斜侵彻弹道快速预测方法研究 [D]. 长沙: 国防科学技术大学, 2011WANG S C. Quick prediction method of oblique penetration trajectory [D]. Changsha, Hunan, China: National University of Defense Technology, 2011.
|
[35] |
何涛, 文鹤鸣. 靶体响应力函数的确定方法及其在侵彻力学中的应用 [J]. 中国科学技术大学学报, 2007, 37(10): 1249–1261. DOI: 10.3969/j.issn.0253-2778.2007.10.017.HE T, WEN H M. Determination of analytical forcing function of target response and its applications in penetration mechanics [J]. Journal of University of Science and Technology of China, 2007, 37(10): 1249–1261. DOI: 10.3969/j.issn.0253-2778.2007.10.017.
|
[36] |
郭虎, 何丽灵, 陈小伟, 等. 球形颗粒遮弹层对高速侵彻弹体的作用机理 [J]. 爆炸与冲击, 2020, 40(10): 103301. DOI: 10.11883/bzycj-2019-0428.GUO H, HE L L, CHEN X W, et al. Penetration mechanism of a high-speed projectile into a shelter made of spherical aggregate [J]. Explosion and Shock Waves, 2020, 40(10): 103301. DOI: 10.11883/bzycj-2019-0428.
|
[37] |
FORRESTAL M J, LUK V K. Dynamic spherical cavity-expansion in a compressible elastic-plastic solid [J]. Journal of Applied Mechanics, 1988, 55(2): 275–279. DOI: 10.1115/1.3173672.
|
[38] |
张林, 张祖根, 秦晓云, 等. D6A、921和45钢的动态破坏与低压冲击特性 [J]. 高压物理学报, 2003, 17(4): 305–310. DOI: 10.11858/gywlxb.2003.04.011.ZHANG L, ZHANG Z G, QIN X Y, et al. Dynamic fracture and mechanical property of D6A, 921 and 45 steels under low shock pressure [J]. Chinese Journal of High Pressure Physics, 2003, 17(4): 305–310. DOI: 10.11858/gywlxb.2003.04.011.
|
[39] |
HE L L, CHEN X W, WANG Z H. Study on the penetration performance of concept projectile for high-speed penetration (CPHP) [J]. International Journal of Impact Engineering, 2016, 94: 1–12. DOI: 10.1016/j.ijimpeng.2016.03.010.
|