• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

薄壁椭球壳在冲击载荷作用下的动态变形模型

范升阳 栗建桥

范升阳, 栗建桥. 薄壁椭球壳在冲击载荷作用下的动态变形模型[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0062
引用本文: 范升阳, 栗建桥. 薄壁椭球壳在冲击载荷作用下的动态变形模型[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0062
FAN Shengyang, LI Jianqiao. Dynamic deformation model of thin-walled ellipsoidal shells under impact loading[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0062
Citation: FAN Shengyang, LI Jianqiao. Dynamic deformation model of thin-walled ellipsoidal shells under impact loading[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0062

薄壁椭球壳在冲击载荷作用下的动态变形模型

doi: 10.11883/bzycj-2024-0062
基金项目: 国家自然科学基金面上项目(12172054)
详细信息
    作者简介:

    范升阳(1999- ),男,硕士研究生,531540772@qq.com

    通讯作者:

    栗建桥(1987- ),男,博士,特别副研究员,jqli@bit.edu.cn

  • 中图分类号: O347

Dynamic deformation model of thin-walled ellipsoidal shells under impact loading

  • 摘要: 为探究薄壁椭球壳在局部冲击载荷作用下的变形特征,开展了实验和数值模拟研究。利用轻气枪开展弹丸冲击实验,采用三维数字图像相关技术记录变形过程,得到了圆柱弹丸以不同初始冲击速度作用下椭球壳的全局变形形貌以及中心凹陷深度和凹陷边界。在弹丸冲击椭球壳的数值模拟中,重点研究了3种曲率半径变化对椭球壳凹陷深度、凹陷长短轴的影响规律,通过量纲分析方法得出了无量纲变形特征所依赖的主要无量纲自变量,通过参数敏感性分析消减影响较小的参数,在保持相同材料、弹体尺寸与壳体厚度同一缩比时,得到了无量纲变形特征与3种曲率半径和速度之间的响应面函数表达式,并提出了根据凹陷深度、凹陷边界预测全局变形的公式,所得表达式尺寸效应良好,预测精度较高,可为工程中大尺寸曲面薄壳冲击载荷防护设计提供参考。
  • 图  1  圆柱弹丸冲击椭球壳实验布置

    Figure  1.  Experimental field of cylindrical projectile impacting ellipsoidal shell

    图  2  椭球壳装配及尺寸示意图

    Figure  2.  Ellipsoidal shell assembly and dimension diagram

    图  3  不同冲击速度下椭球壳的动态变形过程

    Figure  3.  Dynamic deformation process of ellipsoidal shells impacted by projectiles at different velocities

    图  4  实验测量与DIC测量的中心凹深

    Figure  4.  Dimple depth measured by experiment and DIC

    图  5  第一组椭球壳不同时刻离面位移云图(v0=25.69 m/s)

    Figure  5.  The first group of ellipsoidal shell displacement cloud images at different times (v0=25.69 m/s)

    图  6  椭球壳凹陷区域长半轴L1与短半轴L2随冲击速度的变化

    Figure  6.  Variation of major axis L1 and minor axis L2 with impact velocity in ellipsoidal shell depression area

    图  7  薄壁浅椭球壳受圆柱形弹体冲击数值模拟模型

    Figure  7.  Numerical simulation model of shallow thin ellipsoidal shell subjected to cylindrical projectile impact

    图  8  实验与数值模拟全局变形形貌对比

    Figure  8.  Comparison between experimentally obtained global deformation features and simulation obtained global deformation features

    图  9  实验、DIC和数值模拟得到的凹陷深度和凹陷长短半轴对比

    Figure  9.  Comparison of dimple depth and dimple major axis and minor axis obtained by experimental, DIC, and simulation

    图  10  不同冲击速度下中心凹陷深度随曲率半径的变化

    Figure  10.  Variation of dimple depth with radius of curvature at different impact velocities

    图  11  不同冲击速度下凹陷长短半轴随曲率半径R1的变化

    Figure  11.  Variation of concave length and length semi-axis with R1 at different impact velocities

    图  12  不同冲击速度下凹陷长短半轴随曲率半径R3的变化

    Figure  12.  Variation of concave length and length semi-axis with R3 at different impact velocities

    图  13  各参数对变形特征影响的极差分析

    Figure  13.  Range chart of the deformation characteristics of each parameter

    图  14  预测模型凹深在不同速度及曲率半径下的适用范围

    Figure  14.  Predictive model᾽s applicable range for concave depth under different velocities and curvature radii

    图  15  预测模型凹陷边界在不同速度及曲率半径下的适用范围

    Figure  15.  Applicable range of the predictive model᾿s concave boundary under different velocities and curvature radii

    图  16  响应面模型全局变形对比数值模拟全局变形

    Figure  16.  Response surface model global deformation compared with simulated global deformation

    表  1  薄壁金属椭球壳几何与材料参数[20]

    Table  1.   Geometric and material parameters of thin-walled metal ellipsoidal shells[20]

    S1/mm S2/mm d/mm E/GPa ρ/(kg∙m−3) μ
    240 160 40 70 2 700 0.3
    下载: 导出CSV

    表  2  5052Al的Johnson-Cook本构模型参数[20]

    Table  2.   Johnson-Cook constitutive model parameters of 5052Al[20]

    A/MPaB/MPaCnm
    1213270.0090.5441.12
    下载: 导出CSV

    表  3  物理量参数

    Table  3.   Physical quantity parameters

    分析对象 参数 量纲 分析对象 参数 量纲
    薄壁椭球壳 R1 L 圆柱弹丸
    Ls L
    R2 L ms M
    R3 L Rs L
    ρ ML−3 Es ML−1T−2
    E ML−1T−2 μs 1
    Y ML−1T−2 v0 LT−1
    μ 1
    h L
    d L
    下载: 导出CSV

    表  4  正交实验工况设计及数值模拟结果

    Table  4.   Orthogonal experimental design and simulation results

    Cased/mmR1/mmR2/mmR3/mmv0/(m·s−1)w/mmL1/mmL2/mm
    1502002002003015.1447.147.1
    2502402402403519.3164.864.8
    3502802802804022.7270.770.7
    4503203203204526.8782.782.7
    5602002402804524.8554.062.3
    6602402003204021.1253.146.3
    7602803202003520.2979.589.6
    8603202802403016.2871.963.9
    9702002803203517.9242.655.0
    10702403202803015.5650.363.2
    11702802002404525.3976.058.0
    12703202402004023.3094.273.6
    13802003202404022.0955.180.4
    14802402802004526.8478.790.0
    15802802403203015.1951.545.8
    16803202002803518.2866.246.5
    下载: 导出CSV

    表  5  响应面模型的计算工况

    Table  5.   Calculation condition of response surface model

    R1/mm R2/mm R3/mm v0/(m·s−1) w/mm L1/mm L2/mm
    200 200 200 35 18.45 52.9 52.9
    200 300 200 35 18.95 55.5 77.0
    200 400 200 35 19.15 57.4 99.4
    300 300 200 35 20.37 85.0 85.0
    300 400 200 35 20.64 87.0 113.0
    200 200 200 40 21.90 58.3 58.3
    200 300 200 40 22.37 60.6 84.0
    200 400 200 40 22.57 63.5 107.0
    300 300 200 40 24.09 92.7 92.7
    300 400 200 40 24.82 95.7 123.5
    200 200 200 45 25.43 63.0 63.0
    200 300 200 45 25.87 65.4 90.6
    200 400 200 45 25.91 68.0 115.6
    300 300 200 45 27.90 99.6 99.6
    300 400 200 45 28.82 102.5 132.9
    200 200 200 50 29.05 68.2 68.2
    200 300 200 50 29.38 70.0 97.1
    200 400 200 50 29.26 72.0 122.5
    300 300 200 50 31.63 106.0 106.0
    300 400 200 50 32.98 109.6 141.8
    200 200 300 35 17.67 42.5 42.5
    200 300 300 35 18.00 44.4 60.0
    200 400 300 35 18.08 45.6 76.4
    300 300 300 35 19.43 66.9 66.9
    300 400 300 35 19.89 67.5 86.4
    400 400 300 35 20.98 94.4 94.4
    200 200 300 40 20.96 46.7 46.7
    200 300 300 40 21.29 48.5 66.3
    200 400 300 40 21.26 50.0 83.6
    300 300 300 40 23.10 73.6 73.6
    300 400 300 40 23.53 76.0 97.7
    400 400 300 40 24.77 102.8 102.8
    200 200 300 45 24.38 51.0 51.0
    200 300 300 45 24.64 52.83 72.2
    200 400 300 45 24.51 54.0 89.4
    300 300 300 45 26.70 79.5 79.5
    300 400 300 45 27.19 81.8 104.6
    400 400 300 45 28.56 110.8 110.8
    200 200 300 50 27.83 54.7 54.7
    200 300 300 50 28.15 56.8 78.0
    200 400 300 50 27.80 57.3 97.1
    300 300 300 50 30.42 85.3 85.3
    300 400 300 50 30.86 87.6 111.2
    400 400 300 50 32.63 118.6 118.6
    200 200 400 35 17.11 36.3 36.3
    200 300 400 35 17.36 37.5 50.7
    200 400 400 35 17.14 38.5 62.8
    200 200 400 40 20.37 40.1 40.1
    200 300 400 40 20.60 41.7 56.5
    200 400 400 40 20.31 42.3 70.0
    200 200 400 45 23.63 43.5 43.5
    200 300 400 45 23.92 45.0 61.3
    200 400 400 45 23.51 45.7 76.2
    200 200 400 50 27.04 46.8 46.8
    200 300 400 50 27.37 48.8 66.4
    200 400 400 50 26.81 48.8 81.9
    300 300 400 35 18.70 56.7 56.7
    300 400 400 35 19.14 58.8 74.6
    300 300 400 40 22.22 62.5 62.5
    300 400 400 40 22.72 64.8 81.9
    300 300 400 45 25.87 68.2 68.2
    300 400 400 45 26.30 70.2 88.8
    300 300 400 50 29.52 73.7 73.7
    300 400 400 50 29.84 75.3 94.6
    下载: 导出CSV

    表  6  响应面模型误差

    Table  6.   Response surface model error

    变形特征R2δRAAEδRMAEδRMS
    w/h0.9950.0150.0320.019
    L1/h0.9960.0120.0360.017
    L2/h0.9960.0180.050.025
    下载: 导出CSV

    表  7  数值模拟变形特征响应面预测变形特征的对比

    Table  7.   Simulated deformation characteristics compared with response surface predicted deformation features

    Material h/mm R1/mm R2/mm R3/mm v0/(m·s−1) w/mm wa/mm L1/mm L1a/mm L2/mm L2a/mm
    Al 0.5 200 160 180 15 12.5 12.5 46.5 45.5 37.7 38.1
    Al 2.0 450 500 480 80 27.1 29.2 90.8 96.8 97.2 104.9
    Steel 0.5 150 100 200 30 7.5 10.8 24.0 28.7 17.8 21.9
    下载: 导出CSV
  • [1] LIM H K, LEE J S. On the structural behavior of ship’s shell structures due to impact loading [J]. International Journal of Naval Architecture and Ocean Engineering, 2018, 10(1): 103–118. DOI: 10.1016/j.ijnaoe.2017.03.002.
    [2] MOHAMMAD Z, GUPTA P K, BAQI A, et al. Ballistic performance of monolithic and double layered thin-metallic hemispherical shells at normal and oblique impact [J]. Thin-Walled Structures, 2021, 159: 107257. DOI: 10.1016/j.tws.2020.107257.
    [3] UPDIKE D P, KALNINS A. Axisymmetric behavior of an elastic spherical shell compressed between rigid plates [J]. Journal of Applied Mechanics, 1970, 37(3): 635–640. DOI: 10.1115/1.3408592.
    [4] UPDIKE D P. On the large deformation of a rigid-plastic spherical shell compressed by a rigid plate [J]. Journal of Engineering for Industry, 1972, 94(3): 949–955. DOI: 10.1115/1.3428276.
    [5] KITCHING R, HOULSTON R, JOHNSON W. A theoretical and experimental study of hemispherical shells subjected to axial loads between flat plates [J]. International Journal of Mechanical Sciences, 1975, 17(11/12): 693–703. DOI: 10.1016/0020-7403(75)90072-7.
    [6] GUPTA N K, MOHAMED SHERIFF N, VELMURUGAN R. Experimental and numerical investigations into collapse behaviour of thin spherical shells under drop hammer impact [J]. International Journal of Solids and Structures, 2007, 44(10): 3136–3155. DOI: 10.1016/j.ijsolstr.2006.09.014.
    [7] WEN H M. Large plastic deformation of spherical shells under impact by blunt-ended missiles [J]. International Journal of Pressure Vessels and Piping, 1997, 73(2): 147–152. DOI: 10.1016/S0308-0161(97)00043-4.
    [8] 宁建国, 杨桂通. 球形扁壳在冲击载荷作用下的超临界变形 [J]. 爆炸与冲击, 1992, 12(3): 206–212. DOI: 10.11883/1001-1455(1992)03-0206-7.

    NING J G, YANG G T. Supercritical deformations of shallow spherical shells under impact [J]. Explosion and Shock Waves, 1992, 12(3): 206–212. DOI: 10.11883/1001-1455(1992)03-0206-7.
    [9] LI J Q, REN H L, NING J G. Deformation and failure of thin spherical shells under dynamic impact loading: experiment and analytical model [J]. Thin-Walled Structures, 2021, 161: 107403. DOI: 10.1016/j.tws.2020.107403.
    [10] ZHENG J, LI K, LIU S, et al. Effect of shape imperfection on the buckling of large-scale thin-walled ellipsoidal head in steel nuclear containment [J]. Thin-Walled Structures, 2018, 124: 514–522. DOI: 10.1016/j.tws.2018.01.001.
    [11] PALIWAL D N, GUPTA R, JAIN A. Stress analysis of ellipsoidal shell on an elastic foundation [J]. International Journal of Pressure Vessels and Piping, 1993, 56(2): 229–242. DOI: 10.1016/0308-0161(93)90095-B.
    [12] PATEL P R, GILL S S. Experiments on the buckling under internal pressure of thin torispherical ends of cylindrical pressure vessels [J]. International Journal of Mechanical Sciences, 1978, 20(3): 159–175. DOI: 10.1016/0020-7403(78)90003-6.
    [13] BUSHNELL D. Nonsymmetric buckling of internally pressurized ellipsoidal and torispherical elastic-plastic pressure vessel heads [J]. Journal of Pressure Vessel Technology, 1977, 99(1): 54–63. DOI: 10.1115/1.3454520.
    [14] CHAO Y J, SUTTON M A. Stress analysis of ellipsoidal shell with radial nozzle [J]. International Journal of Pressure Vessels and Piping, 1985, 21(2): 89–108. DOI: 10.1016/0308-0161(85)90042-0.
    [15] ROSS C T F, HUAT B H, CHEI T B, et al. The buckling of GRP hemi-ellipsoidal dome shells under external hydrostatic pressure [J]. Ocean Engineering, 2003, 30(5): 691–705. DOI: 10.1016/s0029-8018(02)00039-2.
    [16] BLACHUT J, JAISWAL O R. On the choice of initial geometric imperfections in externally pressurized shells [J]. Journal of Pressure Vessel Technology, 1999, 121(1): 71–76. DOI: 10.1115/1.2883670.
    [17] SMITH P, BŁACHUT J. Buckling of externally pressurized prolate ellipsoidal domes [J]. Journal of Pressure Vessel Technology, 2008, 130(1): 011210. DOI: 10.1115/1.2834457.
    [18] LIU L, LI J Q. Dynamic deformation and perforation of ellipsoidal thin shell impacted by flat-nose projectile [J]. Materials, 2022, 15(12): 4124. DOI: 10.3390/ma15124124.
    [19] 陈旭东, 叶康生. 中厚椭球壳自由振动动力刚度法分析 [J]. 振动与冲击, 2016, 35(6): 85–90. DOI: 10.13465/j.cnki.jvs.2016.06.015.

    CHEN X D, YE K S. Free vibration analysis of moderately thick elliptical shells using the dynamic stiffness method [J]. Journal of Vibration and Shock, 2016, 35(6): 85–90. DOI: 10.13465/j.cnki.jvs.2016.06.015.
    [20] MA T B, SHEN Y, NING J G, et al. Analysis on dynamic shear fracture based on a novel damage evolution model [J]. International Journal of Impact Engineering, 2024, 183: 104810. DOI: 10.1016/j.ijimpeng.2023.104810.
    [21] 陈刚, 陈忠富, 徐伟芳, 等. 45钢的J-C损伤失效参量研究 [J]. 爆炸与冲击, 2007, 27(2): 131–135. DOI: 10.11883/1001-1455(2007)02-0131-05.

    CHEN G, CHEN Z F, XU W F, et al. Investigation on the J-C ductile fracture parameters of 45 steel [J]. Explosion and Shock Waves, 2007, 27(2): 131–135. DOI: 10.11883/1001-1455(2007)02-0131-05.
  • 加载中
图(16) / 表(7)
计量
  • 文章访问数:  136
  • HTML全文浏览量:  18
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-06
  • 修回日期:  2024-12-22
  • 网络出版日期:  2024-12-25

目录

    /

    返回文章
    返回