非对称中空环形聚能装药成型与侵彻特性影响因素分析

李召婷 王树有 孙圣杰 蒋建伟 门建兵

李召婷, 王树有, 孙圣杰, 蒋建伟, 门建兵. 非对称中空环形聚能装药成型与侵彻特性影响因素分析[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0074
引用本文: 李召婷, 王树有, 孙圣杰, 蒋建伟, 门建兵. 非对称中空环形聚能装药成型与侵彻特性影响因素分析[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0074
LI Zhaoting, WANG Shuyou, SUN Shengjie, JIANG Jianwei, MEN Jianbing. Analysis of influencing factors on formationand penetration capabilitiesof asymmetric hollow annular shaped charge[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0074
Citation: LI Zhaoting, WANG Shuyou, SUN Shengjie, JIANG Jianwei, MEN Jianbing. Analysis of influencing factors on formationand penetration capabilitiesof asymmetric hollow annular shaped charge[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0074

非对称中空环形聚能装药成型与侵彻特性影响因素分析

doi: 10.11883/bzycj-2024-0074
基金项目: 爆炸科学与安全防护全国重点实验室(北京理工大学)自主研究课题(YBKT23-09)
详细信息
    作者简介:

    李召婷(1999- ),女,硕士研究生,3120210204@bit.edu.cn

    通讯作者:

    王树有(1977- ),男,博士,副教授,wangsy@bit.edu.cn

  • 中图分类号: O381; TJ410

Analysis of influencing factors on formationand penetration capabilitiesof asymmetric hollow annular shaped charge

  • 摘要: 减弱中空环形聚能装药中中心侵彻体对后级结构的破坏作用,通过改变环锥罩的偏心距离和壁厚,调整了装药和药型罩的质量分布,使之形成准直环形射流,研究了炸高对环形射流侵彻威力的影响规律。数值模拟结果表明:内壳为铝合金时的中心孔平均侵彻深度较内壳为钢时的平均侵彻深度低36.13%;非偏心环锥罩形成的射流存在径向偏移,侵彻能力较弱。当环锥罩顶向外侧偏移0.05dd为环形装药厚度)时,射流准直性较好,环形射流侵彻深度较大;随着药型罩壁厚的增加,射流头部速度不断减小,当壁厚为0.045d时,偏心环锥罩形成的环形射流侵彻能力较强;环形射流侵彻深度对炸高较为敏感,在炸高为1.12d时,环形射流侵彻深度较大。针对非偏心环锥罩和偏心环锥罩两种药型罩结构开展的静破甲试验表明,环形射流侵彻深度和扩孔直径的试验结果与数值模拟结果误差小于12%,验证了数值模拟模型的可靠性。
  • 图  1  中空环形聚能装药结构

    Figure  1.  Hollow annular shaped charge structure

    图  2  中空环形聚能装药有限元模型

    Figure  2.  Finite element model of hollow annular shaped charge

    图  3  环形聚能装药与后端靶板有限元模型

    Figure  3.  Finite element model of annular shaped charges and rear target

    图  4  不同壳体材料组合对后端靶板的侵彻结果

    Figure  4.  Penetration results of rear target with different casing material combinations

    图  5  不同偏心距离时环形射流成型及侵彻结果

    Figure  5.  Formation and penetration results of annular jet at different eccentric distances

    图  6  环形射流径向偏移量示意图

    Figure  6.  Illustration of radial offset of annular jet

    图  7  环形射流的径向偏移量和侵彻深度随偏心距离的变化

    Figure  7.  Radial offset and penetration depth of annular jet at different eccentric distances

    图  8  不同药型罩壁厚时环形射流成型及侵彻结果

    Figure  8.  Formation and penetration results of annular jet at different liner thicknesses

    图  9  环形射流的头部速度和侵彻深度随药型罩壁厚变化规律

    Figure  9.  Tip velocity and penetration depth of annular jet at different liner thicknesses

    图  10  不同炸高时环形射流侵彻结果

    Figure  10.  Penetration results of annular jet at different standoff

    图  11  环形射流的侵彻深度随炸高的变化规律

    Figure  11.  Penetration depth of annular jet at different standoff

    图  12  非偏心环锥罩

    Figure  12.  Non-eccentric liner

    图  13  偏心环锥罩

    Figure  13.  Eccentric liner

    图  14  试验布置示意图

    Figure  14.  Schematic diagram of test layout

    图  15  靶板侵彻结果

    Figure  15.  Penetration results of the target

    图  16  非偏心环锥罩的试验结果和数值模拟结果对比

    Figure  16.  Comparison between experimental and numerical simulation results of non-eccentric liner

    图  17  偏心环锥罩的试验结果和数值模拟结果对比

    Figure  17.  Comparison between experimental and numerical simulation results of eccentric liner

    图  18  侵彻后的靶板几何参数示意图

    Figure  18.  Schematic diagram of geometric parameters of penetrated target

    表  1  装药JWL状态方程参数

    Table  1.   1JWL equation of state parameters of PBX-9404

    ρ/(kg·m−3) A/GPa B/GPa R1 R2 ω vD/(m·s−1) E0/(kJ·m−3) pCJ/GPa
    1 840 852.4 18.02 4.6 1.3 0.38 8 800 1.02e7 37
    下载: 导出CSV

    表  2  药型罩和壳体材料参数

    Table  2.   Material parameters of liner and casing

    材料 ρ/(kg·m−3) K/GPa G/GPa A1/MPa B1/MPa n C m
    高导无氧铜 8 960 129 46 90 292 0.31 0.025 1.09
    4340钢 7 830 159 81.8 792 510 0.26 0.014 1.03
    下载: 导出CSV

    表  3  靶板和壳体材料参数

    Table  3.   Material parameters of target and casing

    材料 ρ/(kg·m−3) γ c1/(m·s−1) S1
    铝合金 2 785 2.00 5 328 1.338
    装甲钢 7 860 1.67 4 610 1.730
    下载: 导出CSV

    表  4  靶板Johnson-Cook失效模型参数[19]

    Table  4.   Failure parameters of target[19]

    材料 D1 D2 D3 D4 D5
    装甲钢 −2.2 5.43 −0.47 0.16 0.63
    下载: 导出CSV

    表  5  不同壳体材料组合时后端靶板的中心孔尺寸

    Table  5.   Core hole sizes in rear target with different casing material combinations

    壳体材料后端靶板中心孔深度/d后端靶板中心孔直径/d
    外钢内钢1.600(打穿)0.24
    外钢内铝合金1.0080.44
    外铝合金内钢1.600(打穿)0.24
    外铝合金内铝合金1.0360.44
    下载: 导出CSV

    表  6  试验中的环形聚能装药结构参数及炸高

    Table  6.   Structural parameters and standoff of annular shaped charge in the test

    环锥罩 Δr/d b/d l/d
    非偏心环锥罩 0 0.045 1.12
    偏心环锥罩 0.05 0.045 1.12
    下载: 导出CSV

    表  7  数值模拟结果与试验结果的对比

    Table  7.   Comparison between numerical simulation and experimental results

    罩型 方法 d1 d2 d3 h
    非偏心环锥罩 试验 4.40d 3.44d 1.00d 0.68d
    数值模拟 4.48d 3.68d 0.88d 0.64d
    误差 1.81% 6.98% 12.00% 5.88%
    偏心环锥罩 试验 4.74d 3.84d 0.80d 0.80d(打穿)
    数值模拟 4.48d 4.00d 0.88d 0.80d(打穿)
    误差 5.08% 4.17% 10.00%
    下载: 导出CSV
  • [1] 刘鑫, 周亮. 串联战斗部研究现状及其发展 [J]. 国防科技, 2012, 33(6): 33–38. DOI: 10.3969/j.issn.1671-4547.2012.06.008.

    LIU X, ZHOU L. The status quo of the study and the development of the series-type warhead [J]. National Defense Science & Technology, 2012, 33(6): 33–38. DOI: 10.3969/j.issn.1671-4547.2012.06.008.
    [2] 辛春亮, 龚苹, 曹君蓬, 等. 一种大开孔双药型罩聚能装药结构的数值模拟 [J]. 兵工学报, 2014, 35(S2): 203–206.

    XIN C L, GONG P, CAO J P, et al. Numerical simulation of a novel shaped charge with two liners [J]. Acta Armamentarii, 2014, 35(S2): 203–206.
    [3] 任思远, 张庆明, 张晓伟, 等. 环形射流和中心爆炸成型弹丸组合战斗部对混凝土墙的破孔特性 [J]. 兵工学报, 2021, 42(8): 1569–1579. DOI: 10.3969/j.issn.1000-1093.2021.08.001.

    REN S Y, ZHANG Q M, ZHANG X W, et al. On the perforation characteristics of concrete wall induced by annular jet and central EFP combined warhead [J]. Acta Armamentarii, 2021, 42(8): 1569–1579. DOI: 10.3969/j.issn.1000-1093.2021.08.001.
    [4] LEIDEL D J. A design study of an annular-jet charge for explosive cutting [D]. Philadelphia: Drexel University, 1978: 47–64.
    [5] 谭波, 刘宏杰, 苗润, 等. 不同装药形式环形聚能战斗部侵彻性能研究 [J]. 系统仿真学报, 2018, 30(12): 4808–4815. DOI: 10.16182/j.issn1004731x.joss.201812040.

    TAN B, LIU H J, MIAO R, et al. Penetrating capability of different annular shaped charge warhead [J]. Journal of System Simulation, 2018, 30(12): 4808–4815. DOI: 10.16182/j.issn1004731x.joss.201812040.
    [6] 王成, 恽寿榕, 黄风雷. W型聚能装药射流形成及侵彻的实验和数值仿真研究 [J]. 兵工学报, 2003, 24(4): 451–454. DOI: 10.3321/j.issn:1000-1093.2003.04.005.

    WANG C, YUN S R, HUANG F L. An experimental study and numerical simulation on annular jet formation and penetration [J]. Acta Armamentarii, 2003, 24(4): 451–454. DOI: 10.3321/j.issn:1000-1093.2003.04.005.
    [7] 徐文龙, 王成, 徐斌. 新型环形聚能射流形成机理研究 [J]. 北京理工大学学报, 2018, 38(6): 572–578. DOI: 10.15918/j.tbit1001-0645.2018.06.004.

    XU W L, WANG C, XU B. Investigation of new type annular shaped charge formation mechanism [J]. Transactions of Beijing Institute of Technology, 2018, 38(6): 572–578. DOI: 10.15918/j.tbit1001-0645.2018.06.004.
    [8] XU W L, WANG C, YUAN J M, et al. Effects of shell on bore center annular shaped charges formation and penetrating into steel targets [J]. Defence Science Journal, 2020, 70(1): 35–40. DOI: 10.14429/DSJ.70.14599.
    [9] XU W L, WANG C, CHEN D P. Formation of a bore-center annular shaped charge and its penetration into steel targets [J]. International Journal of Impact Engineering, 2019, 127: 122–134. DOI: 10.1016/j.ijimpeng.2019.01.008.
    [10] 曹涛, 顾文彬, 刘建青, 等. 起爆点数量对侧向环形聚能装药侵彻能力的影响 [J]. 兵器装备工程学报, 2017, 38(12): 106–111. DOI: 10.11809/scbgxb2017.12.025.

    CAO T, GU W B, LIU J Q, et al. Effects of detonation points number on annular shaped charge penetration ability [J]. Journal of Ordnance Equipment Engineering, 2017, 38(12): 106–111. DOI: 10.11809/scbgxb2017.12.025.
    [11] 曹涛, 顾文彬, 刘建青, 等. 药型罩形状对侧向环形射流性能的影响 [J]. 火工品, 2017(6): 14–18. DOI: 10.3969/j.issn.1003-1480.2017.06.004.

    CAO T, GU W B, LIU J Q, et al. The effects of liner’s shape on performance of lateral annularjet [J]. Initiators & Pyrotechnics, 2017(6): 14–18. DOI: 10.3969/j.issn.1003-1480.2017.06.004.
    [12] 王伟力, 李永胜, 田传勇. 串联战斗部前级环形切割器的设计与试验 [J]. 火炸药学报, 2011, 34(2): 39–43. DOI: 10.3969/j.issn.1007-7812.2011.02.010.

    WANG W L, LI Y S, TIAN C Y. Optimization and test on front annular cutter of tandem warhead [J]. Chinese Journal of Explosives & Propellants, 2011, 34(2): 39–43. DOI: 10.3969/j.issn.1007-7812.2011.02.010.
    [13] 段嘉庆, 王志军, 贾耀鲁, 等. 环形射流成型的设计改进及数值模拟 [J]. 弹箭与制导学报, 2013, 33(1): 103–106. DOI: 10.3969/j.issn.1673-9728.2013.01.028.

    DUAN J Q, WANG Z J, JIA Y L, et al. Design improvement and numerical simulation on annular jet formation [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2013, 33(1): 103–106. DOI: 10.3969/j.issn.1673-9728.2013.01.028.
    [14] 何降润, 展婷变, 付建平, 等. 聚能装药壳体对环形射流侵彻性能的影响 [J]. 弹箭与制导学报, 2020, 40(4): 123–128. DOI: 10.15892/j.cnki.djzdxb.2020.04.026.

    HE J R, ZHAN T B, FU J P, et al. Research on the shell to penetration performance of annular jet [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2020, 40(4): 123–128. DOI: 10.15892/j.cnki.djzdxb.2020.04.026.
    [15] 李永胜, 王伟力, 宋之勇. 抑制中心逆向侵彻体的异型环形装药设计 [J]. 火工品, 2015(5): 21–24. DOI: 10.3969/j.issn.1003-1480.2015.05.006.

    LI Y S, WANG W L, SONG Z Y. Design on special-shaped annular charge to weaken damage of center reverse projectile [J]. Initiators & Pyrotechnics, 2015(5): 21–24. DOI: 10.3969/j.issn.1003-1480.2015.05.006.
    [16] 宋之勇, 王伟力, 李永胜, 等. 前级环形切割器对后端靶板影响的数值仿真 [J]. 海军航空工程学院学报, 2012, 27(6): 684–688.

    SONG Z Y, WANG W L, LI Y S, et al. Numerical simulation on the effect of annular cutter to following target [J]. Journal of Naval Aeronautical and Astronautical University, 2012, 27(6): 684–688.
    [17] 傅磊, 王伟力, 宋之勇, 等. 串联战斗部前级环型聚能装药结构仿真研究 [J]. 计算机仿真, 2015, 32(10): 9–13, 18. DOI: 10.3969/j.issn.1006-9348.2015.10.003.

    FU L, WANG W L, SONG Z Y, et al. Simulation of forward annular shaped charge structure of tandem warhead [J]. Computer Simulation, 2015, 32(10): 9–13, 18. DOI: 10.3969/j.issn.1006-9348.2015.10.003.
    [18] 徐文龙. 超聚能装药理论与应用研究 [D]. 北京: 北京理工大学, 2018: 129–132. DOI: 10.26948/d.cnki.gbjlu.2018.000215.

    XU W L. Research on theory and application of hyper shaped charge [D]. Beijing: Beijing Institute of Technology, 2018: 129–132. DOI: 10.26948/d.cnki.gbjlu.2018.000215.
    [19] 程瑶, 刘晓蕾, 张晓东, 等. 典型立方体破片侵彻装甲钢的数值模拟研究 [J]. 兵器装备工程学报, 2022, 43(8): 106–111. DOI: 10.11809/bqzbgcxb2022.08.016.

    CHENG Y, LIU X L, ZHANG X D, et al. A numerical simulation study of typical cube fragments invading armored steel [J]. Journal of Ordnance Equipment Engineering, 2022, 43(8): 106–111. DOI: 10.11809/bqzbgcxb2022.08.016.
  • 加载中
图(18) / 表(7)
计量
  • 文章访问数:  83
  • HTML全文浏览量:  16
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-15
  • 修回日期:  2024-05-13
  • 网络出版日期:  2024-05-14

目录

    /

    返回文章
    返回