Analysis of influencing factors on formationand penetration capabilitiesof asymmetric hollow annular shaped charge
-
摘要: 为 减弱中空环形聚能装药中中心侵彻体对后级结构的破坏作用,通过改变环锥罩的偏心距离和壁厚,调整了装药和药型罩的质量分布,使之形成准直环形射流,研究了炸高对环形射流侵彻威力的影响规律。数值模拟结果表明:内壳为铝合金时的中心孔平均侵彻深度较内壳为钢时的平均侵彻深度低36.13%;非偏心环锥罩形成的射流存在径向偏移,侵彻能力较弱。当环锥罩顶向外侧偏移0.05d(d为环形装药厚度)时,射流准直性较好,环形射流侵彻深度较大;随着药型罩壁厚的增加,射流头部速度不断减小,当壁厚为0.045d时,偏心环锥罩形成的环形射流侵彻能力较强;环形射流侵彻深度对炸高较为敏感,在炸高为1.12d时,环形射流侵彻深度较大。针对非偏心环锥罩和偏心环锥罩两种药型罩结构开展的静破甲试验表明,环形射流侵彻深度和扩孔直径的试验结果与数值模拟结果误差小于12%,验证了数值模拟模型的可靠性。Abstract: The annular shaped charges serve as the precursor of a tandem warhead, prized for its ability to create large diameter perforation in targets. In an effort to enhance the penetration capacity of the annular shaped charge jet and mitigate the impact of the inner casing on subsequent sections induced by a reversed penetrator, a novel approach was taken to implement the investigation. Four different combinations of inner and outer casing materials based on steel and aluminum alloy were explored. It was found that when the inner casing was made of aluminum alloy, the average penetration depth in the rear target was 36.13% lower than that when the inner casing was made of steel. Selecting an inner casing of aluminum alloy and an outer casing of steel, the effects of tip offset, liner thickness, and standoff distance on the formation and penetration characteristics of the annular jet were further investigated. The results show that the jet formed by the non-eccentric liner exhibits radial offset, negatively influencing its penetration capability. However, by offsetting the liner tip to the outer side by 0.05d (where d represents the radial thickness of the annular shaped charge), both the forming and penetration performances of the jet are significantly improved. In addition, as the liner thickness increases, the velocity of the jet tip gradually decreases. Notably, the annular jet formed by an eccentric conical liner with a thickness of 0.045d exhibits superior penetration performance. Furthermore, the standoff distance emerges as a critical factor influencing the penetration capability of the annular jet. Optimal performance is achieved at a standoff distance of 1.12d. Under the same scenario, jet penetration tests were implemented. The difference between the radius of the penetration tunnel from numerical and experimental study lies within 12%. Subsequently, the reliability of the numerical simulation model and the conclusions are verified.
-
Key words:
- annular shaped charge /
- eccentric liner /
- jet formation /
- jet penetration
-
表 1 装药JWL状态方程参数
Table 1. 1JWL equation of state parameters of PBX-
9404 ρ/(kg·m−3) A/GPa B/GPa R1 R2 ω vD/(m·s−1) E0/(kJ·m−3) pCJ/GPa 1 840 852.4 18.02 4.6 1.3 0.38 8 800 1.02e7 37 表 2 药型罩和壳体材料参数
Table 2. Material parameters of liner and casing
材料 ρ/(kg·m−3) K/GPa G/GPa A1/MPa B1/MPa n C m 高导无氧铜 8 960 129 46 90 292 0.31 0.025 1.09 4340钢 7 830 159 81.8 792 510 0.26 0.014 1.03 表 3 靶板和壳体材料参数
Table 3. Material parameters of target and casing
材料 ρ/(kg·m−3) γ c1/(m·s−1) S1 铝合金 2 785 2.00 5 328 1.338 装甲钢 7 860 1.67 4 610 1.730 材料 D1 D2 D3 D4 D5 装甲钢 −2.2 5.43 −0.47 0.16 0.63 表 5 不同壳体材料组合时后端靶板的中心孔尺寸
Table 5. Core hole sizes in rear target with different casing material combinations
壳体材料 后端靶板中心孔深度/d 后端靶板中心孔直径/d 外钢内钢 1.600(打穿) 0.24 外钢内铝合金 1.008 0.44 外铝合金内钢 1.600(打穿) 0.24 外铝合金内铝合金 1.036 0.44 表 6 试验中的环形聚能装药结构参数及炸高
Table 6. Structural parameters and standoff of annular shaped charge in the test
环锥罩 Δr/d b/d l/d 非偏心环锥罩 0 0.045 1.12 偏心环锥罩 0.05 0.045 1.12 表 7 数值模拟结果与试验结果的对比
Table 7. Comparison between numerical simulation and experimental results
罩型 方法 d1 d2 d3 h 非偏心环锥罩 试验 4.40d 3.44d 1.00d 0.68d 数值模拟 4.48d 3.68d 0.88d 0.64d 误差 1.81% 6.98% 12.00% 5.88% 偏心环锥罩 试验 4.74d 3.84d 0.80d 0.80d(打穿) 数值模拟 4.48d 4.00d 0.88d 0.80d(打穿) 误差 5.08% 4.17% 10.00% − -
[1] 刘鑫, 周亮. 串联战斗部研究现状及其发展 [J]. 国防科技, 2012, 33(6): 33–38. DOI: 10.3969/j.issn.1671-4547.2012.06.008.LIU X, ZHOU L. The status quo of the study and the development of the series-type warhead [J]. National Defense Science & Technology, 2012, 33(6): 33–38. DOI: 10.3969/j.issn.1671-4547.2012.06.008. [2] 辛春亮, 龚苹, 曹君蓬, 等. 一种大开孔双药型罩聚能装药结构的数值模拟 [J]. 兵工学报, 2014, 35(S2): 203–206.XIN C L, GONG P, CAO J P, et al. Numerical simulation of a novel shaped charge with two liners [J]. Acta Armamentarii, 2014, 35(S2): 203–206. [3] 任思远, 张庆明, 张晓伟, 等. 环形射流和中心爆炸成型弹丸组合战斗部对混凝土墙的破孔特性 [J]. 兵工学报, 2021, 42(8): 1569–1579. DOI: 10.3969/j.issn.1000-1093.2021.08.001.REN S Y, ZHANG Q M, ZHANG X W, et al. On the perforation characteristics of concrete wall induced by annular jet and central EFP combined warhead [J]. Acta Armamentarii, 2021, 42(8): 1569–1579. DOI: 10.3969/j.issn.1000-1093.2021.08.001. [4] LEIDEL D J. A design study of an annular-jet charge for explosive cutting [D]. Philadelphia: Drexel University, 1978: 47–64. [5] 谭波, 刘宏杰, 苗润, 等. 不同装药形式环形聚能战斗部侵彻性能研究 [J]. 系统仿真学报, 2018, 30(12): 4808–4815. DOI: 10.16182/j.issn1004731x.joss.201812040.TAN B, LIU H J, MIAO R, et al. Penetrating capability of different annular shaped charge warhead [J]. Journal of System Simulation, 2018, 30(12): 4808–4815. DOI: 10.16182/j.issn1004731x.joss.201812040. [6] 王成, 恽寿榕, 黄风雷. W型聚能装药射流形成及侵彻的实验和数值仿真研究 [J]. 兵工学报, 2003, 24(4): 451–454. DOI: 10.3321/j.issn:1000-1093.2003.04.005.WANG C, YUN S R, HUANG F L. An experimental study and numerical simulation on annular jet formation and penetration [J]. Acta Armamentarii, 2003, 24(4): 451–454. DOI: 10.3321/j.issn:1000-1093.2003.04.005. [7] 徐文龙, 王成, 徐斌. 新型环形聚能射流形成机理研究 [J]. 北京理工大学学报, 2018, 38(6): 572–578. DOI: 10.15918/j.tbit1001-0645.2018.06.004.XU W L, WANG C, XU B. Investigation of new type annular shaped charge formation mechanism [J]. Transactions of Beijing Institute of Technology, 2018, 38(6): 572–578. DOI: 10.15918/j.tbit1001-0645.2018.06.004. [8] XU W L, WANG C, YUAN J M, et al. Effects of shell on bore center annular shaped charges formation and penetrating into steel targets [J]. Defence Science Journal, 2020, 70(1): 35–40. DOI: 10.14429/DSJ.70.14599. [9] XU W L, WANG C, CHEN D P. Formation of a bore-center annular shaped charge and its penetration into steel targets [J]. International Journal of Impact Engineering, 2019, 127: 122–134. DOI: 10.1016/j.ijimpeng.2019.01.008. [10] 曹涛, 顾文彬, 刘建青, 等. 起爆点数量对侧向环形聚能装药侵彻能力的影响 [J]. 兵器装备工程学报, 2017, 38(12): 106–111. DOI: 10.11809/scbgxb2017.12.025.CAO T, GU W B, LIU J Q, et al. Effects of detonation points number on annular shaped charge penetration ability [J]. Journal of Ordnance Equipment Engineering, 2017, 38(12): 106–111. DOI: 10.11809/scbgxb2017.12.025. [11] 曹涛, 顾文彬, 刘建青, 等. 药型罩形状对侧向环形射流性能的影响 [J]. 火工品, 2017(6): 14–18. DOI: 10.3969/j.issn.1003-1480.2017.06.004.CAO T, GU W B, LIU J Q, et al. The effects of liner’s shape on performance of lateral annularjet [J]. Initiators & Pyrotechnics, 2017(6): 14–18. DOI: 10.3969/j.issn.1003-1480.2017.06.004. [12] 王伟力, 李永胜, 田传勇. 串联战斗部前级环形切割器的设计与试验 [J]. 火炸药学报, 2011, 34(2): 39–43. DOI: 10.3969/j.issn.1007-7812.2011.02.010.WANG W L, LI Y S, TIAN C Y. Optimization and test on front annular cutter of tandem warhead [J]. Chinese Journal of Explosives & Propellants, 2011, 34(2): 39–43. DOI: 10.3969/j.issn.1007-7812.2011.02.010. [13] 段嘉庆, 王志军, 贾耀鲁, 等. 环形射流成型的设计改进及数值模拟 [J]. 弹箭与制导学报, 2013, 33(1): 103–106. DOI: 10.3969/j.issn.1673-9728.2013.01.028.DUAN J Q, WANG Z J, JIA Y L, et al. Design improvement and numerical simulation on annular jet formation [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2013, 33(1): 103–106. DOI: 10.3969/j.issn.1673-9728.2013.01.028. [14] 何降润, 展婷变, 付建平, 等. 聚能装药壳体对环形射流侵彻性能的影响 [J]. 弹箭与制导学报, 2020, 40(4): 123–128. DOI: 10.15892/j.cnki.djzdxb.2020.04.026.HE J R, ZHAN T B, FU J P, et al. Research on the shell to penetration performance of annular jet [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2020, 40(4): 123–128. DOI: 10.15892/j.cnki.djzdxb.2020.04.026. [15] 李永胜, 王伟力, 宋之勇. 抑制中心逆向侵彻体的异型环形装药设计 [J]. 火工品, 2015(5): 21–24. DOI: 10.3969/j.issn.1003-1480.2015.05.006.LI Y S, WANG W L, SONG Z Y. Design on special-shaped annular charge to weaken damage of center reverse projectile [J]. Initiators & Pyrotechnics, 2015(5): 21–24. DOI: 10.3969/j.issn.1003-1480.2015.05.006. [16] 宋之勇, 王伟力, 李永胜, 等. 前级环形切割器对后端靶板影响的数值仿真 [J]. 海军航空工程学院学报, 2012, 27(6): 684–688.SONG Z Y, WANG W L, LI Y S, et al. Numerical simulation on the effect of annular cutter to following target [J]. Journal of Naval Aeronautical and Astronautical University, 2012, 27(6): 684–688. [17] 傅磊, 王伟力, 宋之勇, 等. 串联战斗部前级环型聚能装药结构仿真研究 [J]. 计算机仿真, 2015, 32(10): 9–13, 18. DOI: 10.3969/j.issn.1006-9348.2015.10.003.FU L, WANG W L, SONG Z Y, et al. Simulation of forward annular shaped charge structure of tandem warhead [J]. Computer Simulation, 2015, 32(10): 9–13, 18. DOI: 10.3969/j.issn.1006-9348.2015.10.003. [18] 徐文龙. 超聚能装药理论与应用研究 [D]. 北京: 北京理工大学, 2018: 129–132. DOI: 10.26948/d.cnki.gbjlu.2018.000215.XU W L. Research on theory and application of hyper shaped charge [D]. Beijing: Beijing Institute of Technology, 2018: 129–132. DOI: 10.26948/d.cnki.gbjlu.2018.000215. [19] 程瑶, 刘晓蕾, 张晓东, 等. 典型立方体破片侵彻装甲钢的数值模拟研究 [J]. 兵器装备工程学报, 2022, 43(8): 106–111. DOI: 10.11809/bqzbgcxb2022.08.016.CHENG Y, LIU X L, ZHANG X D, et al. A numerical simulation study of typical cube fragments invading armored steel [J]. Journal of Ordnance Equipment Engineering, 2022, 43(8): 106–111. DOI: 10.11809/bqzbgcxb2022.08.016.