椭圆类截面弹体侵彻多层间隔钢靶的弹道特性

杨士林 高旭东 张先锋 王晓锋

杨士林, 高旭东, 张先锋, 王晓锋. 椭圆类截面弹体侵彻多层间隔钢靶的弹道特性[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0096
引用本文: 杨士林, 高旭东, 张先锋, 王晓锋. 椭圆类截面弹体侵彻多层间隔钢靶的弹道特性[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0096
YANG Shilin, GAO Xudong, ZHANG Xianfeng, WANG Xiaofeng. Trajectory characteristics of elliptical cross-section projectile penetrating multi-layer spaced steel targets[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0096
Citation: YANG Shilin, GAO Xudong, ZHANG Xianfeng, WANG Xiaofeng. Trajectory characteristics of elliptical cross-section projectile penetrating multi-layer spaced steel targets[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0096

椭圆类截面弹体侵彻多层间隔钢靶的弹道特性

doi: 10.11883/bzycj-2024-0096
详细信息
    作者简介:

    杨士林(2000- ),男,博士研究生,avatar0128@163.com

    通讯作者:

    高旭东(1975- ),男,博士,副研究员,dong930211@163.com

  • 中图分类号: O385

Trajectory characteristics of elliptical cross-section projectile penetrating multi-layer spaced steel targets

  • 摘要: 为了研究椭圆类截面弹体侵彻多层间隔钢靶的弹道特性,开展了典型弹体侵彻多层间隔Q355B钢靶试验,基于LS-DYNA软件开展有限元仿真研究,得到了弹体在侵彻过程中的姿态偏转和弹道参数,分析了弹体的偏转机制,获得了截面形状、截面压缩系数、初速、滚转角和着角等弹靶参数对椭圆类截面弹体侵彻弹道特性和姿态偏转特性的影响规律。研究结果表明:滚转角为0°时,圆截面弹体侵彻弹道稳定性优于椭圆类截面弹体;弹体截面压缩系数越大,弹体侵彻弹道稳定性越好;弹体初速越大,弹体姿态偏转越小,侵彻弹道越平稳;滚转角为90°时,椭圆截面和非对称椭圆截面弹体在入射平面内的侵彻弹道最稳定,并且两种弹体在水平面内的弹道偏移量分别在滚转角为45°和90°时达到最大,非对称椭圆截面弹体在滚转角为钝角时的侵彻弹道稳定性优于锐角时的情况;弹体着角在[0°,50°]范围内时,侵彻弹道稳定性随着角的增大先减弱后增强,着角在30°左右时姿态偏转和弹道失稳最严重;弹体以较正姿态贯穿薄钢靶时,在弹头部侵彻阶段就已经与靶体分离;弹体以较大攻角贯穿薄钢靶时,弹靶接触主要发生在弹体的上表面。
  • 图  1  试验用弹体(单位:mm)

    Figure  1.  Projectiles used in experiments (unit: mm)

    图  2  试验现场布置

    Figure  2.  Experimental setup

    图  3  弹体侵彻条件示意图

    Figure  3.  Schematic representation of conditions of projectile penetration

    图  4  滚转角示意图

    Figure  4.  Schematic representation of rotation angle

    图  5  不同初始条件下的侵彻弹道偏转

    Figure  5.  Penetration trajectory deflection under different initial conditions

    图  6  靶板典型破坏形式

    Figure  6.  Typical destruction types of targets

    图  7  回收到的4发弹体(左1~4)和原始弹体(右1)

    Figure  7.  The recovered four residual projectiles (1st to 4th from left) and original projectile (1st from right)

    图  8  弹体磨蚀示意图

    Figure  8.  Schematic representation of projectile erosion

    图  9  有限元模型示意图

    Figure  9.  Finite element model

    图  10  姿态角、攻角变化试验与仿真结果的对比

    Figure  10.  Comparison between simulations and experiments for trajectory angle and attack angle

    图  11  侵彻弹道试验与仿真结果的对比

    Figure  11.  Comparison between simulations and experiments for penetration trajectory

    图  12  弹体偏转角加速度曲线和对应侵彻过程

    Figure  12.  Rotation acceleration curve and corresponding penetration process

    图  13  侵彻过程中的4种偏转模式

    Figure  13.  Four deflection modes in penetration process

    图  14  不同截面压缩比下弹体侵彻弹道的仿真结果

    Figure  14.  Penetration trajectory simulation results of projectiles under different λ

    图  15  不同截面压缩系数弹体偏转角速度和角加速度时程曲线

    Figure  15.  Time history curves of angular velocity and angular acceleration under different λ

    图  16  不同截面压缩系数弹体攻角和姿态角时程曲线

    Figure  16.  Time history curves of attack angle and trajectory angle under different λ

    图  17  不同截面压缩系数弹体侵彻弹道轨迹

    Figure  17.  Penetration trajectories under different λ

    图  18  不同滚转角下E1弹体侵彻弹道仿真结果

    Figure  18.  Penetration trajectory simulation results of E1 projectile under different rotation angles

    图  19  不同滚转角下NE1弹体侵彻弹道仿真结果

    Figure  19.  Penetration trajectory simulation results of NE1 projectile under different rotation angles

    图  20  不同滚转角下E1和NE1弹体攻角变化

    Figure  20.  Changes in the attack angle of E1 and NE1 projectiles under different rotation angles

    图  21  不同滚转角下E1和NE1弹体在水平面和入射平面内的姿态角变化

    Figure  21.  Changes in the trajectory angle of E1 and NE1 projectiles under different rotation angles

    图  22  不同滚转角下E1弹体在2个平面的侵彻弹道轨迹

    Figure  22.  Penetration trajectories of E1 projectile in different rotation angles (horizontal plane and incidence plane)

    图  23  不同滚转角下NE1弹体在2个平面内的弹道轨迹

    Figure  23.  Penetration trajectories of E1 projectile in different rotation angles (horizontal plane and incidence plane)

    图  24  不同着角下E1弹体侵彻弹道仿真结果

    Figure  24.  Penetration trajectory simulation results of E1 projectile with different incident angles

    图  25  不同着角下E1弹体攻角和姿态角时程曲线

    Figure  25.  The time history curves of attack angle and trajectory angle at different incident angles

    图  26  弹体在y方向上的合力

    Figure  26.  Resultant force of projectile in y direction

    图  27  不同着角下的侵彻弹道轨迹

    Figure  27.  Penetration trajectories under different incident angles

    表  1  4种弹体的主要几何参数

    Table  1.   Main geometry parameters of the four projectiles

    弹体类型 λ a/mm b/mm CRH m/g
    C1 1.0 12.5 12.5 4.19 389
    E1 0.7 15.0 10.5 3.00 389
    NE1 0.8/0.6 15.0 12.0/9.0 3.00 389
    NE2 0.9/0.5 15.0 13.5/7.5 3.00 389
    下载: 导出CSV

    表  2  弹体侵彻每层钢靶前后的弹道参数

    Table  2.   Trajectory parameters of the projectile before and after penetrating each steel plate

    试验
    编号
    v0/
    (m·s−1)
    β0/
    (°)
    β1/
    (°)
    β2/
    (°)
    β3/
    (°)
    β4/
    (°)
    ϕ0/(°) ϕ1/(°) ϕ2/(°) ϕ3/(°) ϕ4/(°)
    水平面 入射平面 水平面 入射平面 水平面 入射平面 水平面 入射平面 水平面 入射平面
    E1-1 809.1 1.6 2.5 10.6 1.8 2.0 0.9 4.0 11.5 13.4
    E1-2 790.6 2.4 −2.8 −3.3 −9.3 −22.8 0 16.1 0 14.8 0.9 11.9 3.0 −2.0 4.3 −19.4
    E1-3 610.5 0 −0.8 −7.9 −20.6 −44.2 −0.9 30 −2.5 27 14.0 −1.1 −6.5 −34.3
    E1-4 799.7 1.5 −1.1 −5.4 −13.8 −31.5 0 31.5 0 28.7 0 21.2 0 7.3 0 −7.9
    E1-5 1000.0 0.9 −0.4 −4.3 −14.4 0.2 30.9 1.0 30.0 1.9 27.5 4.0 12.5
    E1-6 807.3 −0.8 −1.6 −6.3 −10.2 −24.6 −1.5 29.2 −1.3 27.2 0 23.9 0 16.9 4.8 2.1
    E1-7 802.4 0 −0.2 −0.3 −0.3 −3.7 0 30.0 0 29.0 0 27.9 0 27.6 0 25.6
    C1-1 796.3 0 0 −0.3 −2.4 −10.4 0 30.0 0 30.0 0 28.8 0 25.9 0 16.9
    NE1-1 807.2 0.5 −46.7 29.5 −2.1 −24.9
    NE2-1 798.7 0 −2.9 −12.6 −33.3 −53.2 5.3 30.0 6.6 26.4 9.8 9.1 22.4 −9.0 51.3 −38.3
    下载: 导出CSV

    表  3  材料参数

    Table  3.   Material parameters

    材料 ρ/(g·cm−3) E/GPa μ A/MPa B/MPa n c m D1 D2 D3 D4
    35CrMnSiA 7.85 210 0.30
    Q355B[20] 7.85 210 0.28 339.5 620.0 0.403 0.02 0 0.820 6.047 −7.09 −0.003
    下载: 导出CSV

    表  4  部分典型工况弹体剩余速度试验与仿真结果的对比

    Table  4.   Comparison between simulations and experiments for residual velocity of projectiles

    试验编号 靶板层数 剩余速度/(m·s−1 误差/%
    试验结果 仿真结果
    E1-4 1 794.2 795.4 0.15
    2 782.5 789.2 0.86
    3 762.7 779.2 2.16
    4 737.9 754.1 2.19
    E1-6 1 801.0 802.2 0.14
    2 789.9 794.5 0.58
    3 780.8 783.1 0.29
    4 764.6 760.1 −0.59
    NE2-1 1 792.7 793.6 0.11
    2 783.4 783.6 0.02
    3 751.5 759.5 1.06
    4 681.4 689.9 1.24
    下载: 导出CSV
  • [1] LI Q M, FLORES-JOHNSON E A. Hard projectile penetration and trajectory stability [J]. International Journal of Impact Engineering, 2011, 38(10): 815–823. DOI: 10.1016/j.ijimpeng.2011.05.005.
    [2] GAO X D, LI Q M. Trajectory instability and convergence of the curvilinear motion of a hard projectile in deep penetration [J]. International Journal of Mechanical Sciences, 2017, 121: 123–142. DOI: 10.1016/j.ijmecsci.2016.12.021.
    [3] 薛建锋, 沈培辉, 王晓鸣. 考虑自由表面效应的弹体斜侵彻混凝土弹道的研究 [J]. 高压物理学报, 2016, 30(2): 135–141. DOI: 10.11858/gywlxb.2016.02.008.

    XUE J F, SHEN P H, WANG X M. Ballistics study of projectile obliquely penetrating into concrete with free-surface effect [J]. Chinese Journal of High Pressure Physics, 2016, 30(2): 135–141. DOI: 10.11858/gywlxb.2016.02.008.
    [4] 姜剑生, 何雨, 张小庆, 等. 斜侵彻薄靶板过程中弹体偏转的姿态修正方法 [J]. 兵工学报, 2021, 42(S1): 68–73. DOI: 10.3969/j.issn.1000-1093.2021.S1.009.

    JIANG J S, HE Y, ZHANG X Q, et al. Correcting method of projectile deflection after obliquely penetrating into a thin target plate [J]. Acta Armamentarii, 2021, 42(S1): 68–73. DOI: 10.3969/j.issn.1000-1093.2021.S1.009.
    [5] 高旭东, 李庆明. 弹体结构特征对混凝土斜侵彻弹道偏转的影响分析[C]//第六届全国强动载效应及防护学术会议暨2014年复杂介质/结构的动态力学行为创新研究群体学术研讨会论文集. 北京: 中国力学学会爆炸力学专业委员会, 安全与防护协同创新中心, 爆炸科学与技术国家重点实验室, 2014: 408–415.
    [6] 杜华池, 张先锋, 刘闯, 等. 弹体斜侵彻多层间隔钢靶的弹道特性 [J]. 兵工学报, 2021, 42(6): 1204–1214. DOI: 10.3969/j.issn.1000-1093.2021.06.010.

    DU H C, ZHANG X F, LIU C, et al. Trajectory characteristics of projectile obliquely penetrating into steel target with multi-layer space structure [J]. Acta Armamentarii, 2021, 42(6): 1204–1214. DOI: 10.3969/j.issn.1000-1093.2021.06.010.
    [7] 杜华池. 头部非对称刻槽弹体斜侵彻典型靶体弹道特性研究 [D]. 南京: 南京理工大学, 2020: 26–49. DOI: 10.27241/d.cnki.gnjgu.2021.000770.
    [8] 李鹏程, 张先锋, 刘闯, 等. 攻角和入射角对弹体侵彻混凝土薄靶弹道特性影响规律研究 [J]. 爆炸与冲击, 2022, 42(11): 113302. DOI: 10.11883/bzycj-2021-0435.

    LI P C, ZHANG X F, LIU C, et al. Study on the influence of attack angle and incident angle on ballistic characteristics of projectiles penetration into thin concrete targets [J]. Explosion and Shock Waves, 2022, 42(11): 113302. DOI: 10.11883/bzycj-2021-0435.
    [9] IQBAL M A, SENTHIL K, MADHU V, et al. Oblique impact on single, layered and spaced mild steel targets by 7.62 AP projectiles [J]. International Journal of Impact Engineering, 2017, 110: 26–38. DOI: 10.1016/j.ijimpeng.2017.04.011.
    [10] 袁家俊. 卵形头弹斜侵彻铝合金双层靶板的轨迹变化规律分析 [J]. 机械强度, 2020, 42(6): 1509–1514. DOI: 10.16579/j.issn.1001.9669.2020.06.034.

    YUAN J J. Analysis of trajectory change regulation of ogival-nosed projectiles obliquely penetrating double-layer aluminum alloy targets [J]. Journal of Mechanical Strength, 2020, 42(6): 1509–1514. DOI: 10.16579/j.issn.1001.9669.2020.06.034.
    [11] DONG H, WU H J, LIU Z H, et al. Penetration characteristics of pyramidal projectile into concrete target [J]. International Journal of Impact Engineering, 2020, 143: 103583. DOI: 10.1016/j.ijimpeng.2020.103583.
    [12] WU H J, DENG X M, DONG H, et al. Three-dimensional trajectory prediction and analysis of elliptical projectile [J]. International Journal of Impact Engineering, 2023, 174: 104497. DOI: 10.1016/j.ijimpeng.2023.104497.
    [13] 魏海洋, 张先锋, 熊玮, 等. 椭圆截面弹体斜侵彻金属靶体弹道研究 [J]. 爆炸与冲击, 2022, 42(2): 023304. DOI: 10.11883/bzycj-2021-0291.

    WEI H Y, ZHANG X F, XIONG W, et al. Oblique penetration of elliptical cross-section projectile into metal target [J]. Explosion and Shock Waves, 2022, 42(2): 023304. DOI: 10.11883/bzycj-2021-0291.
    [14] WEI H Y, ZHANG X F, LIU C, et al. A three-dimensional penetration trajectory model for ogive-nosed projectile into metal targets [J]. International Journal of Impact Engineering, 2021, 157: 103998. DOI: 10.1016/j.ijimpeng.2021.103998.
    [15] 岳胜哲, 陈利, 张晓伟, 等. 非对称类椭圆截面弹体斜贯穿铝靶数值模拟研究 [J]. 兵器装备工程学报, 2022, 43(4): 127–133. DOI: 10.11809/bqzbgcxb2022.04.021.

    YUE S Z, CHEN L, ZHANG X W, et al. Numerical simulation of oblique penetration of shaped elliptical cross section projectile through aluminum target [J]. Journal of Ordnance Equipment Engineering, 2022, 43(4): 127–133. DOI: 10.11809/bqzbgcxb2022.04.021.
    [16] 胡雪垚, 屈可朋, 肖玮. D字异型弹体斜侵彻多层钢靶弹道研究 [J]. 兵器装备工程学报, 2022, 43(8): 95–100. DOI: 10.11809/bqzbgcxb2022.08.014.

    HU X Y, QU K P, XIAO W. Study on trajectory of D-shaped projectile oblique penetrating multiple-layered steel targets [J]. Journal of Ordnance Equipment Engineering, 2022, 43(8): 95–100. DOI: 10.11809/bqzbgcxb2022.08.014.
    [17] 田泽, 王浩, 武海军, 等. 椭圆变截面弹体斜贯穿薄靶姿态偏转机理 [J]. 兵工学报, 2022, 43(7): 1537–1552. DOI: 10.12382/bgxb.2021.0367.

    TIAN Z, WANG H, WU H J, et al. Attitude deflection mechanism of projectiles with variable elliptical cross-sections obliquely perforating thin targets [J]. Acta Armamentarii, 2022, 43(7): 1537–1552. DOI: 10.12382/bgxb.2021.0367.
    [18] 邓希旻, 田泽, 武海军, 等. 上下非对称结构弹体侵彻金属薄板的特性及薄板破坏形式 [J]. 兵工学报, 2023, 44(12): 3836–3850. DOI: 10.12382/bgxb.2022.0724.

    DENG X M, TIAN Z, WU H J, et al. Penetration characteristics and plate failure modes of asymmetrically shaped projectiles penetrating thin metal targets [J]. Acta Armamentarii, 2023, 44(12): 3836–3850. DOI: 10.12382/bgxb.2022.0724.
    [19] 魏海洋. 椭圆截面弹体斜侵彻金属靶体弹道特性研究 [D]. 南京: 南京理工大学, 2022: 102–117. DOI: 10.27241/d.cnki.gnjgu.2022.000186.

    WEI H Y. Research on the characteristics of penetration trajectory of elliptical cross-section projectile into metal targets [D]. Nanjing: Nanjing University of Science & Technology, 2022: 102–117. DOI: 10.27241/d.cnki.gnjgu.2022.000186.
    [20] 林莉, 黄博, 肖新科, 等. Q355B钢动态材料性能研究 [J]. 振动与冲击, 2020, 39(18): 231–237. DOI: 10.13465/j.cnki.jvs.2020.18.031.

    LIN L, HUANG B, XIAO X K, et al. Behavior of dynamic material Q355B steel based on the Johnson-Cook model [J]. Journal of Vibration and shock, 2020, 39(18): 231–237. DOI: 10.13465/j.cnki.jvs.2020.18.031.
    [21] PAUL B, ZAID M. Normal perforation of a thin plate by truncated projectiles [J]. Journal of the Franklin Institute, 1958, 265(4): 317–335. DOI: 10.1016/0016-0032(58)90627-6.
  • 加载中
图(27) / 表(4)
计量
  • 文章访问数:  137
  • HTML全文浏览量:  21
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-07
  • 修回日期:  2024-09-05
  • 网络出版日期:  2024-09-06

目录

    /

    返回文章
    返回