• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

H型钢柱撞击全过程力学性能分析与损伤评估

颉宗旺 王蕊 王宇恒 赵晖 李倩

颉宗旺, 王蕊, 王宇恒, 赵晖, 李倩. H型钢柱撞击全过程力学性能分析与损伤评估[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0119
引用本文: 颉宗旺, 王蕊, 王宇恒, 赵晖, 李倩. H型钢柱撞击全过程力学性能分析与损伤评估[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0119
XIE Zongwang, WANG Rui, WANG Yuheng, ZHAO Hui, LI Qian. Analysis on mechanical performance and damage evaluation of H-section steel columns during and after impact process[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0119
Citation: XIE Zongwang, WANG Rui, WANG Yuheng, ZHAO Hui, LI Qian. Analysis on mechanical performance and damage evaluation of H-section steel columns during and after impact process[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0119

H型钢柱撞击全过程力学性能分析与损伤评估

doi: 10.11883/bzycj-2024-0119
基金项目: 国家自然科学基金(52108162);山西省基础研究计划(20210302124674)
详细信息
    作者简介:

    颉宗旺(1999- ),男,硕士研究生,xzw191212@163.com

    通讯作者:

    赵 晖(1988- ),男,博士,副教授,zhaohui01@tyut.edu.cn

  • 中图分类号: O383

Analysis on mechanical performance and damage evaluation of H-section steel columns during and after impact process

  • 摘要: 鉴于H型钢柱在工业厂房、停车场等场合应用时易遭受吊装载荷和车辆撞击,在前期试验研究的基础上,通过有限元对H型钢柱撞击中及撞击后的力学性能开展全过程分析。首先,通过机理分析,获得了不同轴压比影响下试件的变形特征、应力和耗能发展。结果表明,侧向撞击下,H型钢柱以整体变形为主,上翼缘和腹板分别发生局部凹陷和平面外屈曲;撞击力时程曲线呈现明显的平台段,预加轴力明显削弱试件的抗撞能力。其次,建立了108个参数分析模型,重点探究了荷载参数(撞击质量m、撞击速度vh,m和轴压比n)、材料参数(屈服强度fys)和几何参数(截面面积A和试件长度L)对撞击力、撞击变形和剩余承载力的影响,发现随着撞击质量m、撞击速度vh,m和轴压比n的增大,H型钢柱的整体和局部变形增大,剩余承载力降低。此外,钢材强度的提高有效增强了试件的抗撞性能。最后,基于响应面法提出了多因子交互影响的撞击下整体和局部变形及撞击后剩余承载力的预测公式,可用于H型钢柱撞击全过程损伤评估与设计。
  • 图  1  撞击全过程加载路径

    Figure  1.  Loading path of the whole impact process

    图  2  横截面参数

    Figure  2.  Cross-sectional parameters

    图  3  试件的破坏模式[11]

    Figure  3.  Failure modes of specimens[11]

    图  4  有限元分析流程

    Figure  4.  Finite element analysis process

    图  5  有限元模型

    Figure  5.  Finite element models

    图  6  网格敏感性分析

    Figure  6.  Mesh-sensitivity analysis

    图  7  有限元模拟得到的破坏模式与试验结果[11]的对比

    Figure  7.  Comparison between numerical failure modes and tested results[11]

    图  8  撞击力和跨中挠度随时间的变化

    Figure  8.  Variation of impact force and mid-span deflection with time

    图  9  模拟值和试验值[11]的对比

    Figure  9.  Comparison between simulated results and tested ones[11]

    图  10  撞击下试件H-2.5-0.4无量纲参数的时程曲线

    Figure  10.  Dimensionless parameter-time history curves of specimen H-2.5-0.4 under impact

    图  11  不同轴压比下试件撞击力和挠度的时程曲线

    Figure  11.  Impact force and deflection time history curves of specimens with different axial load ratios under impact

    图  12  不同轴压比下撞后试件的剩余轴向载荷-挠度曲线

    Figure  12.  Residual axial load-deflection curves of specimens with different axial load ratios after impact

    图  13  撞击下试件H-2.5-0.4轴向应力的发展

    Figure  13.  Axial stress development of specimen H-2.5-0.4 under impact

    图  14  耗能分析

    Figure  14.  Energy dissipation analysis

    图  15  载荷参数对H型钢柱抗撞性能和撞后剩余承载力的影响

    Figure  15.  Influences of load parameters on anti-collision performances and residual bearing capacity of H-shaped steel columns after impact

    图  16  钢材屈服强度对H型钢柱抗撞性能和撞后剩余承载力的影响

    Figure  16.  Influences of steel yield strength on anti-collision performances and residual bearing capacity of H-shaped steel columns after impact

    图  17  几何参数对H型钢柱抗撞性能的影响

    Figure  17.  Influences of geometric parameters on anti-collision performances of H-shaped steel columns

    图  18  交互作用对整体变形的影响

    Figure  18.  Influences of interaction on global deformation

    图  19  交互作用对局部变形的影响

    Figure  19.  Influences of interaction on local deformation

    图  20  整体和局部变形公式预测值与有限元模拟值的对比

    Figure  20.  Comparison of global and local deformations by predicted by the formula with the corresponding results by finite element simulation

    图  21  位移因数βg和凹陷因数βl交互作用对剩余承载力因数βr的影响

    Figure  21.  Influence of interaction between displacement factor βg and indentation factor βl on residual load-carrying capacity factor βr

    图  22  剩余承载力因数的公式预测值βr, formula与有限元模拟值βr, FE的对比

    Figure  22.  Comparison of residual load-carrying capacity factor βr, formula prediceted by the formula with the corresponding one βr, FE by finite element simulation

    表  1  不同试件的实验参数[11]

    Table  1.   Experimental parameters for different specimens[11]

    试件编号 n m/kg vh,m/(m∙s−1) H/m U/kJ 试件编号 n m/kg vh,m/(m∙s−1) H/m U/kJ
    H-0-a H-2.5-0.4-a 0.4 521 7.00 2.5 12.8
    H-2.5-0-a 0 521 7.00 2.5 12.8 H-2.5-0.4-b 0.4 521 7.00 2.5 12.8
    H-2.5-0-b 0 521 7.00 2.5 12.8 H-3.0-0-a 0 521 7.67 3.0 15.3
    H-2.5-0-c 0 521 7.00 2.5 12.8 H-3.0-0-b 0 521 7.67 3.0 15.3
    H-2.5-0.2-a 0.2 521 7.00 2.5 12.8 H-3.0-0.2-a 0.2 521 7.67 3.0 15.3
    H-2.5-0.2-b 0.2 521 7.00 2.5 12.8 H-3.0-0.4-a 0.4 521 7.67 3.0 15.3
     注:试件编号中“2.5”和“3.0”代表落锤释放高度,“0”、“0.2”和“0.4”代表预加轴压比,“a”、“b”和“c”表示同组3个重复试件。
    下载: 导出CSV

    表  2  不同区域钢材的力学性能[11]

    Table  2.   Mechanical properties of steel material used in different regions[11]

    区域 $f_{\mathrm{y}}^{\mathrm{s}} $/MPa E/GPa fu/MPa ξ/% 区域 $f_{\mathrm{y}}^{\mathrm{s}} $/MPa E/GPa fu/MPa ξ/%
    腹板 290.1 206 421.1 27.0 翼缘 251.6 202 409.8 34.8
    下载: 导出CSV

    表  3  参数取值

    Table  3.   Parameter values

    h/mm b/mm ww/mm wf/mm m/kg vh,m/(m∙s−1) n $f_{\mathrm{y}}^{\mathrm{s}} $/MPa A/mm2 L/m
    300 300 10 15 4 000 3 0 355 1 1700 4
    350 350 12 19 5 000 4 0.2 420 1 7400 5
    400 400 13 21 6 000 5 0.4 460 2 0154 6
    下载: 导出CSV
  • [1] HUO J S, ZHANG J Q, LIU Y Z, et al. Dynamic behaviour and catenary action of axially-restrained steel beam under impact loading [J]. Structures, 2017, 11: 84–96. DOI: 10.1016/j.istruc.2017.04.005.
    [2] D’ANTIMO M, LATOUR M, RIZZANO G, et al. Experimental and numerical assessment of steel beams under impact loadings [J]. Journal of Constructional Steel Research, 2019, 158: 230–247. DOI: 10.1016/j.jcsr.2019.03.029.
    [3] Al-THAIRY H, WANG Y C. A numerical study of the behaviour and failure modes of axially compressed steel columns subjected to transverse impact [J]. International Journal of Impact Engineering, 2011, 38(8/9): 732–744. DOI: 10.1016/j.ijimpeng.2011.03.005.
    [4] Al-THAIRY H, WANG Y C. An assessment of the current Eurocode 1 design methods for building structure steel columns under vehicle impact [J]. Journal of Constructional Steel Research, 2013, 88: 164–171. DOI: 10.1016/j.jcsr.2013.05.013.
    [5] Al-THAIRY H, WANG Y C. Simplified FE vehicle model for assessing the vulnerability of axially compressed steel columns against vehicle frontal impact [J]. Journal of Constructional Steel Research, 2014, 102: 190–203. DOI: 10.1016/j.jcsr.2014.07.005.
    [6] AL-THAIRY H A B, WANG Y. Behaviour and design of steel columns subjected to vehicle impact [M]. Zurich: Trans Tech Publications Ltd, 2014. DOI: 10.4028/www.scientific.net/AMM.566.193.
    [7] XIANG S Y, HE Y J, ZHOU X H, et al. Continuous twice-impact analysis of steel parking structure columns [J]. Journal of Constructional Steel Research, 2021, 187: 106989. DOI: 10.1016/j.jcsr.2021.106989.
    [8] 王蕊, 郭昭胜, 裴畅. 局部屈曲变形损伤对H型钢柱竖向剩余承载力影响的试验研究 [J]. 建筑结构, 2014, 44(21): 17–22. DOI: 10.19701/j.jzjg.2014.21.004.

    WANG R, GUO Z S, PEI C. Experimental study on vertical residual bearing capacity of H-shaped steel column with local buckling deformation [J]. Building Structure, 2014, 44(21): 17–22. DOI: 10.19701/j.jzjg.2014.21.004.
    [9] BAI Y, WANG R, CUI J L. Residual bearing capacity numerical simulation and theoretical analysis of H-shaped steel column impacted under different axis pressure [J]. Advanced Materials Research, 2014, 1065/1066/1067/1068/1069: 1097-1100. DOI: 10.4028/www.scientific.net/AMR.1065-1069.1097.
    [10] ZHAO H, WANG R, LI Q M, et al. Experimental and numerical investigation on impact and post-impact behaviours of H-shaped steel members [J]. Engineering Structures, 2020, 216: 110750. DOI: 10.1016/j.engstruct.2020.110750.
    [11] WANG R, YANG X, ZHAO H, et al. Damage evaluation of axial-loaded H-section steel columns during and after impact loading [J]. Journal of Constructional Steel Research, 2022, 196: 107426. DOI: 10.1016/j.jcsr.2022.107426.
    [12] MAKAREM F S, ABED F. Nonlinear finite element modeling of dynamic localizations in high strength steel columns under impact [J]. International Journal of Impact Engineering, 2013, 52: 47–61. DOI: 10.1016/j.ijimpeng.2012.10.006.
    [13] CHEN Y, WAN J, WANG K, et al. Residual axial bearing capacity of square steel tubes after lateral impact [J]. Journal of Constructional Steel Research, 2017, 137: 325–341. DOI: 10.1016/j.jcsr.2017.06.019.
    [14] 韩林海. 钢管混凝土结构: 理论与实践 [M]. 3版. 北京: 科学出版社, 2016: 68–77.

    HAN L H. Concrete filled steel tubular structures: theory and practice [M] 3rd ed. Beijing: Science Press, 2016: 68–77.
    [15] 侯川川. 低速横向冲击荷载下圆钢管混凝土构件的力学性能研究 [D]. 北京: 清华大学, 2012.

    HOU C C. Study on performance of circular concrete-filled steel tubular (CFST) members under low velocity transverse impact [D]. Beijing: Tsinghua University, 2012.
    [16] COWPER G, SYMONDS P S. Strain-hardening and strain-rate effects in the impact loading of cantilever beams [R]. 1957. DOI: 10.21236/ad0144762.
    [17] ABRAMOWICZ W, JONES N. Dynamic axial crushing of square tubes [J]. International Journal of Impact Engineering, 1984, 2(2): 179–208. DOI: 10.1016/0734-743X(84)90005-8.
    [18] DAI X H, WANG Y C, BAILEY C G. Numerical modelling of structural fire behaviour of restrained steel beam-column assemblies using typical joint types [J]. Engineering Structures, 2010, 32(8): 2337–2351. DOI: 10.1016/j.engstruct.2010.04.009.
    [19] ZHAO H, MEI S Q, WANG R, et al. Round-ended concrete-filled steel tube columns under impact loading: Test, numerical analysis and design method [J]. Thin-Walled Structures, 2023, 191: 111020. DOI: 10.1016/j.tws.2023.111020.
    [20] ZHAO H, XIE Z W, YANG B H, et al. Impact resistance performance of precast reinforced concrete barriers with grouted sleeve and steel angle-to-plate connections [J]. Engineering Structures, 2024, 316: 118533. DOI: 10.1016/j.engstruct.2024.118533.
    [21] WANG R, HAN L H, HOU C C. Behavior of concrete filled steel tubular (CFST) members under lateral impact: Experiment and FEA model [J]. Journal of Constructional Steel Research, 2013, 80: 188–201. DOI: 10.1016/j.jcsr.2012.09.003.
    [22] 孔祥韶, 杨豹, 周沪, 等. 基于响应面法的纤维金属层合板抗弹性能优化设计 [J]. 爆炸与冲击, 2022, 42(4): 043301. DOI: 10.11883/bzycj-2021-0146.

    KONG X S, YANG B, ZHOU H, et al. Optimal design of ballistic performance of fiber-metal laminates based on the response surface method [J]. Explosion and Shock Waves, 2022, 42(4): 043301. DOI: 10.11883/bzycj-2021-0146.
    [23] 樊伟, 孙洋, 申东杰, 等. 带主梁的简化模型与响应面联合的桥梁船撞易损性分析方法 [J]. 湖南大学学报(自然科学版), 2021, 48(3): 34–43,135. DOI: 10.16339/j.cnki.hdxbzkb.2021.03.004.

    FAN W, SUN Y, SHEN D J, et al. Vessel-collision vulnerability analysis method of bridge structures based on simplified model with girders and response surface [J]. Journal of Hunan University (Natural Sciences), 2021, 48(3): 34–43,135. DOI: 10.16339/j.cnki.hdxbzkb.2021.03.004.
    [24] 樊伟, 毛薇, 庞于涛, 等. 钢筋混凝土柱式桥墩抗车撞可靠度分析研究 [J]. 中国公路学报, 2021, 34(2): 162–176. DOI: 10.19721/j.cnki.1001-7372.2021.02.006.

    FAN W, MAO W, PANG Y T, et al. Reliability analysis of reinforced concrete column bridge piers subjected to vehicle collisions [J]. China Journal of Highway and Transport, 2021, 34(2): 162–176. DOI: 10.19721/j.cnki.1001-7372.2021.02.006.
    [25] HAMMOUDI A, MOUSSACEB K, BELEBCHOUCHE C, et al. Comparison of artificial neural network (ANN) and response surface methodology (RSM) prediction in compressive strength of recycled concrete aggregates [J]. Construction and Building Materials, 2019, 209: 425–436. DOI: 10.1016/j.conbuildmat.2019.03.119.
    [26] 郭金龙, 潘爽, 付诗琦. 侧向冲击作用后圆中空夹层钢管混凝土长柱的竖向剩余承载性能研究[J]. 工程力学, 2024, DOI: 10.6052/j.issn.1000-4750.2023.02.0095.

    GUO J L, PAN S, FU S Q. Study on the vertical residual bearing behaviors of circular concrete-filled double-skin steel tubular long columns after lateral impact [J]. Engineering Mechanics, 2024, DOI: 10.6052/j.issn.1000-4750.2023.02.0095.
  • 加载中
图(22) / 表(3)
计量
  • 文章访问数:  258
  • HTML全文浏览量:  77
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-29
  • 修回日期:  2024-07-23
  • 网络出版日期:  2024-08-13

目录

    /

    返回文章
    返回