Calculation method for quasi-static pressure of annular composite implosion of active materials and explosives
-
摘要: 为了预测密闭环境活性材料与炸药环状复合后内爆准静态压力,首先归纳了已有的考虑后燃效应的碳氢氧氮炸药内爆准静态压力计算模型,并在此基础上提出了一种适用于活性材料与炸药环状复合内爆的准静态压力计算模型。然后进行活性材料与炸药复合装药和含铝炸药的内爆试验,利用试验获得的数据对模型精度进行验证,最后对比分析两种炸药内爆准静态压力试验结果,将计算模型推广至一般含铝炸药,并利用文献数据验证。研究结果表明所建立的复合炸药考虑后燃准静态压力修正模型与试验数据、文献数据吻合较好,平均误差为9.1%,最大误差15.8%;对一般含铝炸药的计算结果平均误差为12.1%,最大误差20.6%。Abstract: In order to predict the quasi-static pressure of internal explosion in a closed environment composed of aluminum containing active materials and explosive rings, this paper summarizes the existing quasi-static pressure calculation models for hydrogen, oxygen, and nitrogen explosives considering post ignition effects, and proposes an optimization method for the quasi-static pressure calculation mode applicable to internal explosion of aluminum containing composite charges. After obtaining the ideal maximum reaction heat using the Geiss theorem, this method uses a parameter correction related to the aluminum containing composite explosive itself. Taking Herzog as an example, a specific prediction formula is provided. Then, composite charges of active materials and explosives, as well as aluminum containing explosives, were tested for implosion. Typical overpressure curves were provided, and the method for obtaining quasi-static pressure in the tests and related sources were explained. The experimental data was compared and analyzed with the quasi-static pressure results calculated by the established optimization model, demonstrating the reliability of the modified model. At the same time, the internal explosion results of two types of explosives were compared, and the calculation model was extended to general aluminum containing explosives. The accuracy of the model was verified using quasi-static pressure data from relevant literature, and the reasons for errors and possible improvement methods were analyzed. The research results show that the established quasi-static pressure correction model for post combustion of composite explosives is in good agreement with experimental and literature data, with an average error of 9.1% and a maximum error of 15.8%; The average error of the calculation results for aluminum containing explosives is 12.1%, with a maximum error of 20.6%.
-
Key words:
- implosion /
- quasi static pressure /
- post combustion effect /
- active materials /
- composite charge
-
表 1 常见气体定压比热容
Table 1. Common gas specific heat capacity at constant pressure
气体 温度/K 定压比热容/(J·mol−1·K−1) 气体 温度/K 定压比热容/(J·mol−1·K−1) CO2 300~ 2000 37.129 CO 298~ 2500 29.121 H2O 298~ 2500 33.577 O2 289~ 1500 29.359 N2 298~ 2500 29.121 CH4 291~ 1500 35.715 表 2 试验工况
Table 2. Test conditions
工况 装药 质量/g 质量分数/% Al RDX 其他 1 JH-14—Al/PTFE复合装药 150.03 14.0 42.5 33.5 150.03 2 152.56 22.7 41.7 35.6 152.56 3 353.00 29.5 66.3 4.2 4 JHL-2 360.00 30.0 65.0 5.0 表 3 试验结果与计算结果比较
Table 3. Comparison between experimental and theoretical results
工况 装药质量/g a μ 试验压力/MPa 计算压力/MPa 误差/% 修正前 修正后 修正前 修正后 1 150.03 2.7 0.425 0.180 0.253 0.181 40.6 0.6 150.03 2.7 0.425 0.172 0.253 0.181 47.1 5.2 2 152.56 4.5 0.417 0.177 0.297 0.198 67.8 11.8 152.56 4.5 0.417 0.180 0.297 0.198 65.0 10.0 3 353.00 3.8 0.663 0.430 0.686 0.498 59.5 15.8 4 360.00 3.7 0.663 0.440 0.676 0.490 53.6 11.4 工况 药量/g 质量分数/% 工况 药量/g 质量分数/% 铝 CL-20 其他 铝 CL-20 其他 1 200 10 64.5 25.5 4 100 10 64.5 25.5 2 200 20 54.5 25.5 5 100 20 54.5 25.5 3 200 30 45.5 25.5 6 100 30 44.5 25.5 -
[1] KUHL A L, REICHENBACH H. Combustion effects in confined explosions [J]. Proceedings of the Combustion Institute, 2009, 32(2): 2291–2298. DOI: 10.1016/j.proci.2008.05.001. [2] KUHL A L, FORBES J, CHANDLER J, et al. Confined combustion of TNT explosion products in air: UCRL-K-131748 [R]. Livermore: Lawrence Livermore National Laboratory, 1998. [3] FELDGUN V R, KARINSKI Y S, EDRI I, et al. Prediction of the quasi-static pressure in confined and partially confined explosions and its application to blast response simulation of flexible structures [J]. International Journal of Impact Engineering, 2016, 90: 46–60. DOI: 10.1016/j.ijimpeng.2015.12.001. [4] EDRI I, FELDGUN V R, KARINSKI Y S, et al. On blast pressure analysis due to a partially confined explosion: III. Afterburning effect [J]. International Journal of Protective Structures, 2012, 3(3): 311–331. DOI: 10.1260/2041-4196.3.3.311. [5] 李旭东. 内爆准静态压力载荷对舱壁结构的毁伤效应研究 [D]. 太原: 中北大学, 2020. DOI: 10.27470/d.cnki.ghbgc.2020.001050.LI X D. Study on the damage effect of internal explosive quasi-static pressure loads to bulkhead structures [D]. Taiyuan: North University of China, 2020. DOI: 10.27470/d.cnki.ghbgc.2020.001050. [6] 王等旺, 张德志, 李焰, 等. 爆炸容器内准静态气压实验研究 [J]. 兵工学报, 2012, 33(12): 1493–1497. DOI: 10.3969/j.issn.1000-1093.2012.12.014.WANG D W, ZHANG D Z, LI Y, et al. Experiment investigation on quasi-static pressure in explosion containment vessels [J]. Acta Armamentarii, 2012, 33(12): 1493–1497. DOI: 10.3969/j.issn.1000-1093.2012.12.014. [7] 王鑫, 张连生, 张明明, 等. 密闭空间TNT内爆炸准静态压力研究 [J]. 兵器装备工程学报, 2020, 41(5): 188–192. DOI: 10.11809/bqzbgcxb2020.05.036.WANG X, ZHANG L S, ZHANG M M, et al. Study on quasi-static pressure of TNT internal explosion in confined spaces [J]. Journal of Ordnance Equipment Engineering, 2020, 41(5): 188–192. DOI: 10.11809/bqzbgcxb2020.05.036. [8] 张玉磊, 苏健军, 李芝绒, 等. TNT内爆炸准静态压力特性 [J]. 爆炸与冲击, 2018, 38(6): 1429–1434. DOI: 10.11883/bzycj-2017-0170.ZHANG Y L, SU J J, LI Z R, et al. Quasi-static pressure characteristic of TNT’s internal explosion [J]. Explosion and Shock Waves, 2018, 38(6): 1429–1434. DOI: 10.11883/bzycj-2017-0170. [9] 钟巍, 田宙. 等压假设下考虑化学反应动力学影响的约束爆炸准静态压力的计算 [J]. 爆炸与冲击, 2013, 33(4): 375–380. DOI: 10.3969/j.issn.1001-1455.2013.04.007.ZHONG W, TIAN Z. Calculation of quasi-static pressures for confined explosions considering chemical reactions under isobaric assumption [J]. Explosion and Shock Waves, 2013, 33(4): 375–380. DOI: 10.3969/j.issn.1001-1455.2013.04.007. [10] 钟巍, 田宙. 考虑产物化学反应影响的约束爆炸准静态压力数值计算方法 [J]. 爆炸与冲击, 2013, 33(S1): 78–83.ZHONG W, TIAN Z. Numerical calculation of quasi-static pressures of confined explosions considering chemical reactions kinetic of detonation products [J]. Explosion and Shock Waves, 2013, 33(S1): 78–83. [11] 钟巍, 田宙, 赵阳. 考虑约束爆炸后产物发生化学反应的约束空间内准静态温度计算 [J]. 爆炸与冲击, 2015, 35(6): 777–784. DOI: 10.11883/1001-1455(2015)06-0777-08.ZHONG W, TIAN Z, ZHAO Y. Calculation of the quasi-static temperature of confined explosions in consideration of the effect of the chemical reactions with detonation products [J]. Explosion and Shock Waves, 2015, 35(6): 777–784. DOI: 10.11883/1001-1455(2015)06-0777-08. [12] 徐维铮, 吴卫国. 密闭空间内爆炸准静态压力理论计算研究 [J]. 中国舰船研究, 2019, 14(5): 124–130. DOI: 10.19693/j.issn.1673-3185.01368.XU W Z, WU W G. Study on theoretical calculation of quasi-static pressure for explosion in confined space [J]. Chinese Journal of Ship Research, 2019, 14(5): 124–130. DOI: 10.19693/j.issn.1673-3185.01368. [13] 李世伟, 王正宏, 吴成成, 等. 铝粉含量对RDX基含铝炸药爆热性能的影响 [J]. 爆破器材, 2022, 51(4): 29–32. DOI: 10.3969/j.issn.1001-8352.2022.04.005.LI S W, WANG Z H, WU C C, et al. Effect of aluminum content on detonation heat of RDX-based aluminized explosives [J]. Explosive Materials, 2022, 51(4): 29–32. DOI: 10.3969/j.issn.1001-8352.2022.04.005. [14] 李媛媛, 王晓峰, 牛余雷, 等. 环境氧含量对含铝炸药爆热的影响 [J]. 火炸药学报, 2014, 37(2): 49–52,56. DOI: 10.14077/j.issn.1007-7812.2014.02.009.LI Y Y, WANG X F, NIU Y L, et al. Effects of environment oxygen content on heat of detonation of aluminized explosive [J]. Chinese Journal of Explosives & Propellants, 2014, 37(2): 49–52,56. DOI: 10.14077/j.issn.1007-7812.2014.02.009. [15] 白玉. 含铝炸药爆炸场温度测试及数值模拟 [D]. 太原: 中北大学, 2022. DOI: 10.27470/d.cnki.ghbgc.2022.000344.BAI Y. Temperature measurement and numerical simulation of explosive field containing aluminum [D]. Taiyuan: North University of China, 2022. DOI: 10.27470/d.cnki.ghbgc.2022.000344. [16] 张玉磊, 李芝绒, 蒋海燕, 等. 温压炸药内爆炸压力特性及威力试验研究 [J]. 兵工学报, 2018, 39(7): 1333–1338. DOI: 10.3969/j.issn.1000-1093.2018.07.011.ZHANG Y L, LI Z R, JIANG H Y, et al. Experimental study of the characteristics of internal explosion pressure and power of thermobaric explosive [J]. Acta Armamentarii, 2018, 39(7): 1333–1338. DOI: 10.3969/j.issn.1000-1093.2018.07.011. [17] 蒋欣利, 张国凯, 何勇, 等. 密闭建筑温压炸药内爆炸后燃效应 [J]. 兵工学报, 2024, 45(8): 2520–2530. DOI: 10.12382/bgxb.2023.0555.JIANG X L, ZHANG G K, HE Y, et al. Afterburning effect of thermobaric explosives in confined space [J]. Acta Armamentarii, 2024, 45(8): 2520–2530. DOI: 10.12382/bgxb.2023.0555. [18] 李媛媛, 徐洪涛. 密闭环境下含铝炸药爆炸场温度与压力特征 [J]. 爆破器材, 2014, 43(2): 1–4. DOI: 10.3969/j.issn.1001-8352.2014.02.001.LI Y Y, XU H T. Characteristics of blasting temperature and pressure of aluminized explosive in confined conditions [J]. Explosive Materials, 2014, 43(2): 1–4. DOI: 10.3969/j.issn.1001-8352.2014.02.001. [19] 段晓瑜. 含铝炸药空气中爆炸冲击波特性研究 [D]. 北京: 北京理工大学, 2017. DOI: 10.26948/d.cnki.gbjlu.2017.000047.DUAN X Y. Study on the properties of shock wave from aluminized explosives blast in air [D]. Beijing: Beijing Institute of Technology, 2017. DOI: 10.26948/d.cnki.gbjlu.2017.000047. [20] 卢广照, 姜春兰, 毛亮, 等. 薄钢板在CL-20基含铝炸药内爆载荷作用下的变形响应和工程预测 [J]. 兵工学报, 2020, 41(8): 1509–1518. DOI: 10.3969/j.issn.1000-1093.2020.08.005.LU G Z, JIANG C L, MAO L, et al. Deformation response and its engineering prediction of steel plate subjected to internal blast loading from CL-20-based aluminized explosive charges [J]. Acta Armamentarii, 2020, 41(8): 1509–1518. DOI: 10.3969/j.issn.1000-1093.2020.08.005. [21] 阳世清, 徐松林, 张彤. PTFE/Al反应材料制备工艺及性能 [J]. 国防科技大学学报, 2008, 30(6): 39–42,62. DOI: 10.3969/j.issn.1001-2486.2008.06.009.YANG S Q, XU S L, ZHANG T. Preparation and performance of PTFE/Al reactive materials [J]. Journal of National University of Defense Technology, 2008, 30(6): 39–42,62. DOI: 10.3969/j.issn.1001-2486.2008.06.009. [22] 刘瑞华, 王亚军, 万奕, 等. 氧化铝/聚四氟乙烯热化学反应特性及影响因素 [J]. 火炸药学报, 2024, 47(1): 35–43. DOI: 10.14077/j.issn.1007-7812.202304023.LIU R H, WANG Y J, WAN Y, et al. Thermochemical reaction characteristics and influencing factors of alumina/polytetrafluoroethylene composites [J]. Chinese Journal of Explosives & Propellants, 2024, 47(1): 35–43. DOI: 10.14077/j.issn.1007-7812.202304023. [23] 刘瑞华, 王亚军, 邓正亮, 等. 铝基含氟铝热体系反应机理研究进展 [J]. 火炸药学报, 2023, 46(9): 776–787. DOI: 10.14077/j.issn.1007-7812.202303004.LIU R H, WANG Y J, DENG Z L, et al. Progress on the reaction mechanism of aluminum-based fluorine-containing thermite systems [J]. Chinese Journal of Explosives and Propellants, 2023, 46(9): 776–787. DOI: 10.14077/j.issn.1007-7812.202303004. [24] 陈林玉, 张向军, 张鸣一, 等. 氮化铝纳米陶瓷粉末制备方法的研究进展 [J]. 兵器材料科学与工程, 2024, 47(3): 130–137. DOI: 10.14024/j.cnki.1004-244x.20240513.001.CHEN L Y, ZHANG X J, ZHANG M Y, et al. Research progress on preparation methods of aluminum nitride nano-ceramic powder [J]. Ordnance Materials Science and Engineering, 2024, 47(3): 130–137. DOI: 10.14024/j.cnki.1004-244x.20240513.001. [25] 岳学森. 舰船舱内爆炸载荷燃烧增强效应及抑制方法研究 [D]. 武汉: 武汉理工大学, 2022. DOI: 10.27381/d.cnki.gwlgu.2022.001554.YUE X S. Study on afterburning effect and mitigation method of blast load in confined cabin [D]. Wuhan: Wuhan University of Technology, 2022. DOI: 10.27381/d.cnki.gwlgu.2022.001554. [26] 钟凯, 张朝阳. 纳米铝颗粒在不同炸药环境中氧化燃烧的分子动力学模拟 [J]. 含能材料, 2023, 31(1): 48–60. DOI: 10.11943/CJEM2022231.ZHONG K, ZHANG C Y. Oxidation and combustion of aluminum nanoparticles in different explosive environments by molecular dynamics simulation [J]. Chinese Journal of Energetic Materials, 2023, 31(1): 48–60. DOI: 10.11943/CJEM2022231.