[1] |
KENNEDY R P. A review of procedures for the analysis and design of concrete structures to resist missile impact effects [J]. Nuclear Engineering and Design, 1976, 37(2): 183–203. DOI: 10.1016/0029-5493(76)90015-7.
|
[2] |
HUGHES G. Hard missile impact on reinforced concrete [J]. Nuclear Engineering and Design, 1984, 77(1): 23–35. DOI: 10.1016/0029-5493(84)90058-X.
|
[3] |
KAR A K. Local effects of tornado-generated missiles [J]. Journal of the Structural Division, 1978, 104(5): 809–816. DOI: 10.1061/JSDEAG.0004915.
|
[4] |
ACE. Fundamentals of protective design: AT1207821 [R]. Pennsylvania, USA: Office of the Chief of Engineers, 1946.
|
[5] |
NDRC. Effects of impact and explosion: summary technical report of division 2, vol. 1 [R]. Washington: National Defense Research Committee, 1946.
|
[6] |
BERNARD R S. Depth and motion prediction for earth penetrators: ADA 056701 [R]. Vicksburg: U. S. Army Engineer Waterways Experiment Station, 1978.
|
[7] |
BERNARD R S. Empirical analysis of projectile penetration in rock: ADA 047989 [R]. Vicksburg: U. S. Army Engineer Waterways Experiment Station, 1977.
|
[8] |
YOUNG C W. Penetration equations: AC04-94AL85000 [R]. Albuquerque: Sandia National Labs. , 1997.
|
[9] |
FORRESTAL M J, OKAJIMA K, LUK V K. Penetration of 6061-T651 aluminum targets with rigid long rods [J]. Journal of Applied Mechanics, 1988, 55(4): 755–760. DOI: 10.1115/1.3173718.
|
[10] |
FORRESTAL M J, WARREN T L. Penetration equations for ogive-nose rods into aluminum targets [J]. International Journal of Impact Engineering, 2008, 35(8): 727–730. DOI: 10.1016/j.ijimpeng.2007.11.002.
|
[11] |
FORRESTAL M J, LUK V K. Dynamic spherical cavity-expansion in a compressible elastic-plastic solid [J]. Journal of Applied Mechanics, 1988, 55(2): 275–279. DOI: 10.1115/1.3173672.
|
[12] |
FORRESTAL M J. Penetration into dry porous rock [J]. International Journal of Solids and Structures, 1986, 22(12): 1485–1500. DOI: 10.1016/0020-7683(86)90057-0.
|
[13] |
WANG M Y, QIU Y Y, LI J, et al. Theoretical and experimental study on penetration in rock and ground impact effects of long rod projectiles of hyper speed [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(3): 564–572. DOI: 10.13722/j.cnki.jrme.2017.1348.
|
[14] |
LI J, WANG M Y, CHENG Y H, et al. Analytical model of hypervelocity penetration into rock [J]. International Journal of Impact Engineering, 2018, 122: 384–394. DOI: 10.1016/j.ijimpeng.2018.08.008.
|
[15] |
LUK V K, FORRESTAL M J. Penetration into semi-infinite reinforced-concrete targets with spherical and ogival nose projectiles [J]. International Journal of Impact Engineering, 1987, 6(4): 291–301. DOI: 10.1016/0734-743X(87)90096-0.
|
[16] |
FORRESTAL M J, TZOU D Y. A spherical cavity-expansion penetration model for concrete targets [J]. International Journal of Solids and Structures, 1997, 34(31/32): 4127–4146. DOI: 10.1016/S0020-7683(97)00017-6.
|
[17] |
HE T, WEN H M, GUO X J. A spherical cavity expansion model for penetration of ogival-nosed projectiles into concrete targets with shear-dilatancy [J]. Acta Mechanica Sinica, 2011, 27(6): 1001–1012. DOI: 10.1007/s10409-011-0505-1.
|
[18] |
FORRESTAL M J, ALTMAN B S, CARGILE J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets [J]. International Journal of Impact Engineering, 1994, 15(4): 395–405. DOI: 10.1016/0734-743X(94)80024-4.
|
[19] |
FREW D J, HANCHAK S J, GREEN M L, et al. Penetration of concrete targets with ogive-nose steel rods [J]. International Journal of Impact Engineering, 1998, 21(6): 489–497. DOI: 10.1016/S0734-743X(98)00008-6.
|
[20] |
FORRESTAL M J, FREW D J, HICKERSON J P, et al. Penetration of concrete targets with deceleration-time measurements [J]. International Journal of Impact Engineering, 2003, 28(5): 479–497. DOI: 10.1016/S0734-743X(02)00108-2.
|
[21] |
GOMEZ J T, SHUKLA A. Multiple impact penetration of semi-infinite concrete [J]. International Journal of Impact Engineering, 2001, 25(10): 965–979. DOI: 10.1016/S0734-743X(01)00029-X.
|
[22] |
吴飚, 任辉启, 陈力, 等. 弹体侵彻混凝土尺度效应试验研究与理论分析 [J]. 防护工程, 2020, 42(2): 1–10. DOI: 10.3969/j.issn.1674-1854.2020.02.001.WU B, REN H Q, CHEN L, et al. Experimental study and theoretical analysis of size effect on projectile penetrating concrete [J]. Protective Engineering, 2020, 42(2): 1–10. DOI: 10.3969/j.issn.1674-1854.2020.02.001.
|
[23] |
ROSENBERG Z, KREIF R, DEKEL E. A note on the geometric scaling of long-rod penetration [J]. International Journal of Impact Engineering, 1997, 19(3): 277–283. DOI: 10.1016/S0734-743X(96)00023-1.
|
[24] |
FENG J, SUN W W, LI B M. Numerical study of size effect in concrete penetration with LDPM [J]. Defence Technology, 2018, 14(5): 560–569. DOI: 10.1016/j.dt.2018.07.006.
|
[25] |
PENG Y, WU H, FANG Q, et al. Geometrical scaling effect for penetration depth of hard projectiles into concrete targets [J]. International Journal of Impact Engineering, 2018, 120: 46–59. DOI: 10.1016/j.ijimpeng.2018.05.010.
|
[26] |
CANFIELD J A, CLATOR I G. Development of a scaling law and techniques to investigate penetration in concrete: NWL report No. 2057[R]. Dahlgren: U. S. Naval Weapons Laboratory, 1966.
|
[27] |
ME-BAR Y. A method for scaling ballistic penetration phenomena [J]. International Journal of Impact Engineering, 1997, 19(9/10): 821–829. DOI: 10.1016/S0734-743X(97)00020-1.
|
[28] |
ANDERSON C E, MULLIN S A, KUHLMAN C J. Computer simulation of strain-rate effects in replica scale model penetration experiments [J]. International Journal of Impact Engineering, 1993, 13(1): 35–52. DOI: 10.1016/0734-743X(93)90107-I.
|
[29] |
LI Q M, REID S R, WEN H M, et al. Local impact effects of hard missiles on concrete targets [J]. International Journal of Impact Engineering, 2005, 32(1/2/3/4): 224–284. DOI: 10.1016/j.ijimpeng.2005.04.005.
|
[30] |
王安宝, 邓国强, 杨秀敏, 等. 一个新的通用型侵彻深度计算公式 [J]. 土木工程学报, 2021, 54(10): 36–46. DOI: 10.15951/j.tmgcxb.2021.10.004.WANG A B, DENG G Q, YANG X M, et al. A new general formula for calculating penetration depth [J]. China Civil Engineering Journal, 2021, 54(10): 36–46. DOI: 10.15951/j.tmgcxb.2021.10.004.
|
[31] |
彭永, 卢芳云, 方秦, 等. 弹体侵彻混凝土靶体的尺寸效应分析 [J]. 爆炸与冲击, 2019, 39(11): 113301. DOI: 10.11883/bzycj-2018-0402.PENG Y, LU F Y, FANG Q, et al. Analyses of the size effect for projectile penetrations into concrete targets [J]. Explosion and Shock Waves, 2019, 39(11): 113301. DOI: 10.11883/bzycj-2018-0402.
|
[32] |
程月华, 姜鹏飞, 吴昊, 等. 考虑尺寸效应的典型钻地弹侵彻混凝土深度分析 [J]. 爆炸与冲击, 2022, 42(6): 063302. DOI: 10.11883/bzycj-2021-0373.CHENG Y H, JIANG P F, WU H, et al. On penetration depth of typical earth-penetrating projectiles into concrete targets considering the scaling effect [J]. Explosion and Shock Waves, 2022, 42(6): 063302. DOI: 10.11883/bzycj-2021-0373.
|
[33] |
何勇, 戎晓力, 吴威涛, 等. 数物驱动智能仿真在重要目标毁伤效应评估中的应用 [J]. 防护工程, 2023, 45(6): 19–30. DOI: 10.3969/j.issn.1674-1854.2023.06.005.HE Y, RONG X L, WU W T, et al. Application of data-and-physics-driven intelligent simulation in damage effects assessment of critical targets [J]. Protective Engineering, 2023, 45(6): 19–30. DOI: 10.3969/j.issn.1674-1854.2023.06.005.
|
[34] |
李峰, 石全, 孙正. 目标毁伤效果评估技术研究综述 [J]. 兵器装备工程学报, 2018, 39(9): 69–72. DOI: 10.11809/bqzbgcxb2018.09.015.LI F, SHI Q, SUN Z. Summary of technical research on the evaluation of target mutilation [J]. Journal of Ordnance Equipment Engineering, 2018, 39(9): 69–72. DOI: 10.11809/bqzbgcxb2018.09.015.
|
[35] |
BERNARD R S, CREIGHTON D C. Projectile penetration in soil and rock: analysis for non-normal impact: SL-79-15 [R]. Vicksburg: U. S. Army Engineer Waterways Experiment Station, 1979.
|
[36] |
任辉启, 穆朝民, 刘瑞朝. 精确制导武器侵彻效应与工程防护[M]. 北京: 科学出版社, 2016.
|
[37] |
周健南, 金丰年, 王斌. 别列赞公式中弹体参数取值的探讨 [J]. 弹道学报, 2008, 20(2): 20–23.ZHOU J N, JIN F N, WANG B. Discussion on projectile parameters in Березаиъ formula [J]. Journal of Ballistics, 2008, 20(2): 20–23.
|
[38] |
LONGCOPE D B, FORRESTAL M J. Penetration of targets described by a Mohr-Coulomb failure criterion with a tension cutoff [J]. Journal of Applied Mechanics, 1983, 50(2): 327–333. DOI: 10.1115/1.3167040.
|
[39] |
FORRESTAL M J, LONGCOPE D B. Closed-form solutions for forces on conical-nosed penetrators into geological targets with constant shear strength [J]. Mechanics of Materials, 1982, 1(4): 285–295. DOI: 10.1016/0167-6636(82)90028-X.
|
[40] |
FREW D J, FORRESTAL M J, HANCHAK S J. Penetration experiments with limestone targets and ogive-nose steel projectiles [J]. Journal of Applied Mechanics, 2000, 67(4): 841–845. DOI: 10.1115/1.1331283.
|
[41] |
蒋东, 史文卿, 黄瑞源, 等. 高速/超高速侵彻的尺度效应及相似规律 [J]. 中国科学: 物理学 力学 天文学, 2021, 51(10): 104710. DOI: 10.1360/SSPMA-2021-0070.JIANG D, SHI W Q, HUANG R Y, et al. Scale effects and similarity laws on high/hypervelocity impact penetration [J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2021, 51(10): 104710. DOI: 10.1360/SSPMA-2021-0070.
|
[42] |
钱七虎, 王明洋. 岩土中的冲击爆炸效应 [M]. 北京: 国防工业出版社, 2010.QIAN Q H, WANG M Y. Impact and explosion effects in rock and soil [M]. Beijing: National Defense Industry Press, 2010.
|
[43] |
杨卫. 宏微观断裂力学 [M]. 北京: 国防工业出版社, 1995.
|
[44] |
杨占军. 岩石抗剪强度的检测与计算 [J]. 内蒙古煤炭经济, 2022(21): 148–150. DOI: 10.3969/j.issn.1008-0155.2022.21.049.YANG Z J. Detection and calculation of rock shear strength [J]. Inner Mongolia Coal Economy, 2022(21): 148–150. DOI: 10.3969/j.issn.1008-0155.2022.21.049.
|
[45] |
徐志英. 岩石力学 [M]. 北京: 水利电力出版社, 1986.
|
[46] |
CHANG S H, LEE C I, JEON S. Measurement of rock fracture toughness under modes i and ii and mixed-mode conditions by using disc-type specimens [J]. Engineering Geology, 2002, 66(1/2): 79–97. DOI: 10.1016/S0013-7952(02)00033-9.
|
[47] |
ZHANG Z X. An empirical relation between mode Ⅰ fracture toughness and the tensile strength of rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(3): 401–406. DOI: 10.1016/S1365-1609(02)00032-1.
|
[48] |
王启智, 吴礼舟. 用平台巴西圆盘试样确定脆性岩石的弹性模量、拉伸强度和断裂韧度——第二部分: 试验结果 [J]. 岩石力学与工程学报, 2004, 23(2): 199–204. DOI: 10.3321/j.issn:1000-6915.2004.02.004.WANG Q Z, WU L Z. Determination of elastic modulus, tensile strength and fracture toughness of britle rocks by using flattened Brazilian disk specimen-part Ⅱ: experimental results [J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(2): 199–204. DOI: 10.3321/j.issn:1000-6915.2004.02.004.
|
[49] |
何唐甫. 美国钻地武器研究发展状况及钻地计算分析 [C]//第三届全国工程结构防护学术会议论文集. 北京: 中国力学学会, 1999: 350–358.
|
[50] |
徐天涵, 谢方, 何勇. 刚性弹侵彻缩比实验尺寸效应分析 [J]. 南京理工大学学报, 2024, 48(2): 141–147. DOI: 10.14177/j.cnki.32-1397n.2024.48.02.003.XU T H, XIE F, HE Y. Analysis of size effect for scaled penetration test of rigid projectiles [J]. Journal of Nanjing University of Science and Technology, 2024, 48(2): 141–147. DOI: 10.14177/j.cnki.32-1397n.2024.48.02.003.
|
[51] |
张德志, 张向荣, 林俊德, 等. 高强钢弹对花岗岩正侵彻的实验研究 [J]. 岩石力学与工程学报, 2005, 24(9): 1612–1618. DOI: 10.3321/j.issn:1000-6915.2005.09.024.ZHANG D Z, ZHANG X R, LIN J D, et al. Penetration experiments for normal impact into granite targets with high-strength steel projectile [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(9): 1612–1618. DOI: 10.3321/j.issn:1000-6915.2005.09.024.
|
[52] |
MARKESET G, LANGBERG H. High performance concrete-penetration resistance and material development [C]//Proceedings of the 9th International Symposium on Interaction of the Effects of Munitions with Structures. Berlin-Strausberg: Bundesrepublik Deutschland, 1999.
|