放电状态对锂离子电池在机械滥用条件下力学响应和失效行为的影响

朱烨君 娄本杰 邓先攀 孟康培 陈晓平

朱烨君, 娄本杰, 邓先攀, 孟康培, 陈晓平. 放电状态对锂离子电池在机械滥用条件下力学响应和失效行为的影响[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0321
引用本文: 朱烨君, 娄本杰, 邓先攀, 孟康培, 陈晓平. 放电状态对锂离子电池在机械滥用条件下力学响应和失效行为的影响[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0321
ZHU Yejun, LOU Benjie, DENG Xianpan, MENG Kangpei, CHEN Xiaoping. Effects of discharge state on mechanical responses and failure behaviors of lithium-ion batteries under mechanical abuse conditions[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0321
Citation: ZHU Yejun, LOU Benjie, DENG Xianpan, MENG Kangpei, CHEN Xiaoping. Effects of discharge state on mechanical responses and failure behaviors of lithium-ion batteries under mechanical abuse conditions[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0321

放电状态对锂离子电池在机械滥用条件下力学响应和失效行为的影响

doi: 10.11883/bzycj-2024-0321
基金项目: 国家自然科学基金(12402457);浙江省汽车安全技术研究重点实验室开放基金(GL/20-002X);宁波市自然科学基金(2023J389)
详细信息
    作者简介:

    朱烨君(1999- ),女,硕士研究生,zhuyejun2024@163.com

    通讯作者:

    孟康培(1991- ),男,博士研究生,副教授, mengkangpei@nbut.edu.cn

  • 中图分类号: O383; U469.7

Effects of discharge state on mechanical responses and failure behaviors of lithium-ion batteries under mechanical abuse conditions

  • 摘要: 为厘清放电状态对锂离子电池动态力学响应和失效模式的影响规律,系统地开展了锂离子电池在不同放电状态下的准静态压缩特性及其安全性的实验分析。通过预设电池至特定的放电电量,并在放电过程中、放电后静置1小时及24小时的时间节点上实施压缩测试,深入探究了电池的力-位移响应特性、最大承载力及安全性表现。实验结果显示,相较于其他状态,放电状态下的电池展现出较低的力-位移曲线,表明其刚度在静置之后相比于放电过程中有所提升。此外,放电状态下的电池展现出显著高于静置后状态的最大承载力,且放电过程中的压缩测试更容易电池发生爆炸,而静置后的电池则表现出显著提升的安全性。借助扫描电子显微镜分析,进一步确认了放电状态下电池内部电极颗粒的破损程度更剧烈,观测到的现象被归因于放电过程中产生的扩散诱导应力,该应力在电池内部累积,加剧了电池在机械压缩下的损伤风险。
  • 图  1  充放电循环测试系统

    Figure  1.  Battery cycling test system

    图  2  典型放电过程

    Figure  2.  Typical discharge process

    图  3  实验平台及实验方法

    Figure  3.  Experimental platform and method

    图  4  放电后受机械滥用得到的反作用力和电压随位移的变化

    Figure  4.  Variation of reaction force and voltage with displacement under mechanical abuse after discharging

    图  5  放电后静置1 h受机械滥用得到的反作用力和电压随位移的变化

    Figure  5.  Variation of reaction force and voltage with displacement under mechanical abuse after 1 h rest

    图  6  放电后静置24 h受机械滥用得到的反作用力和电压随位移的变化

    Figure  6.  Variation of reaction force and voltage with displacement under mechanical abuse after 24 h rest

    图  7  静置不同时间反作用力-位移随放电深度的变化曲线

    Figure  7.  Curves of reaction force-displacement varying with depth of discharge after different resting times

    图  8  不同放电状态反作用力-位移随静置时间的变化曲线

    Figure  8.  Curves of reaction force-displacement varying with resting time under different discharge states

    图  9  放电至2.90 V后静置不同时间的拟合结果

    Figure  9.  Fitting results for different resting times after discharging to 2.90 V

    图  10  电池刚度参数随着放电深度和静置时间的变化

    Figure  10.  Variation of battery stiffness parameters with depth of discharge and resting time

    图  11  不同放电程度和静置时间受压缩中最大反作用力

    Figure  11.  Maximum reaction force during compression under varying degrees of electric discharge and resting times

    图  12  电池内部锂离子浓度差和扩散应力示意图

    Figure  12.  Schematic diagrams of lithium ion concentration difference and diffusion stress inside batteries

    图  13  不同条件下机械滥用测试回收的正极颗粒SEM图

    Figure  13.  SEM images of cathode particles obtained by mechanical abuse testing under different conditions

    图  14  不同条件下机械滥用测试回收的负极颗粒SEM图

    Figure  14.  SEM images of anode particles obtained by mechanical abuse testing under different conditions

  • [1] 许骏, 王璐冰, 刘冰河. 锂离子电池机械完整性研究现状和展望 [J]. 汽车安全与节能学报, 2017, 8(1): 15–29. DOI: 10.3969/j.issn.1674-8484.2017.01.002.

    XU J, WANG L B, LIU B H. Review for mechanical integrity of lithium-ion battery [J]. Journal of Automotive Safety and Energy, 2017, 8(1): 15–29. DOI: 10.3969/j.issn.1674-8484.2017.01.002.
    [2] LIU B H, JIA Y K, YUAN C H, et al. Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: a review [J]. Energy Storage Materials, 2020, 24: 85–112. DOI: 10.1016/j.ensm.2019.06.036.
    [3] SAHRAEI E, HILL R, WIERZBICKI T. Calibration and finite element simulation of pouch lithium-ion batteries for mechanical integrity [J]. Journal of Power Sources, 2012, 201: 307–321. DOI: 10.1016/j.jpowsour.2011.10.094.
    [4] ZHU J E, LUO H L, LI W, et al. Mechanism of strengthening of battery resistance under dynamic loading [J]. International Journal of Impact Engineering, 2019, 131: 78–84. DOI: 10.1016/j.ijimpeng.2019.05.003.
    [5] XU J, LIU B H, WANG L B, et al. Dynamic mechanical integrity of cylindrical lithium-ion battery cell upon crushing [J]. Engineering Failure Analysis, 2015, 53: 97–110. DOI: 10.1016/j.engfailanal.2015.03.025.
    [6] LIU B H, YIN S, XU J. Integrated computation model of lithium-ion battery subject to nail penetration [J]. Applied Energy, 2016, 183: 278–289. DOI: 10.1016/j.apenergy.2016.08.101.
    [7] WANG G W, ZHANG S, LI M, et al. Deformation and failure properties of high-Ni Lithium-Ion battery under axial loads [J]. Materials, 2021, 14(24): 7844. DOI: 10.3390/ma14247844.
    [8] ZHENG G, TAN L L, TIAN G L, et al. Dynamic crashing behaviors of prismatic lithium-ion battery cells [J]. Thin-Walled Structures, 2023, 192: 110902. DOI: 10.1016/j.tws.2023.110902.
    [9] YU D, REN D S, DAI K R, et al. Failure mechanism and predictive model of lithium-ion batteries under extremely high transient impact [J]. Journal of Energy Storage, 2021, 43: 103191. DOI: 10.1016/j.est.2021.103191.
    [10] HU L L, ZHANG Z W, ZHOU M Z, et al. Crushing behaviors and failure of packed batteries [J]. International Journal of Impact Engineering, 2020, 143: 103618. DOI: 10.1016/j.ijimpeng.2020.103618.
    [11] SANTOSA S P, NIRMALA T. Numerical and experimental validation of fiber metal laminate structure for lithium-ion battery protection subjected to high-velocity impact loading [J]. Composite Structures, 2024, 332: 117924. DOI: 10.1016/j.compstruct.2024.117924.
    [12] ZHOU D, LI H G, LI Z H, et al. Toward the performance evolution of lithium-ion battery upon impact loading [J]. Electrochimica Acta, 2022, 432: 141192. DOI: 10.1016/j.electacta.2022.141192.
    [13] LIU Y J, XIA Y, XING B B, et al. Mechanical-electrical-thermal responses of lithium-ion pouch cells under dynamic loading: a comparative study between fresh cells and aged ones [J]. International Journal of Impact Engineering, 2022, 166: 104237. DOI: 10.1016/j.ijimpeng.2022.104237.
    [14] WANG T, CHEN X P, CHEN G, et al. Investigation of mechanical integrity of prismatic lithium-ion batteries with various state of charge [J]. Journal of Electrochemical Energy Conversion and Storage, 2021, 18(3): 031002. DOI: 10.1115/1.4048330.
    [15] CHEN X P, WANG T, ZHANG Y, et al. Dynamic behavior and modeling of prismatic lithium-ion battery [J]. International Journal of Energy Research, 2020, 44(4): 2984–2997. DOI: 10.1002/er.5126.
    [16] EDGE J S, O’KANE S, PROSSER R, et al. Lithium ion battery degradation: what you need to know [J]. Physical Chemistry Chemical Physics, 2021, 23(14): 8200–8221. DOI: 10.1039/D1CP00359C.
  • 加载中
图(14)
计量
  • 文章访问数:  63
  • HTML全文浏览量:  46
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-31
  • 修回日期:  2024-11-01
  • 网络出版日期:  2024-11-04

目录

    /

    返回文章
    返回