近地小天体对地撞击成坑模型研究进展

刘文近 张庆明 马晓荷 龙仁荣 任健康 龚自正 武强 任思远

刘文近, 张庆明, 马晓荷, 龙仁荣, 任健康, 龚自正, 武强, 任思远. 近地小天体对地撞击成坑模型研究进展[J]. 爆炸与冲击, 2021, 41(12): 121404. doi: 10.11883/bzycj-2021-0255
引用本文: 刘文近, 张庆明, 马晓荷, 龙仁荣, 任健康, 龚自正, 武强, 任思远. 近地小天体对地撞击成坑模型研究进展[J]. 爆炸与冲击, 2021, 41(12): 121404. doi: 10.11883/bzycj-2021-0255
LIU Wenjin, ZHANG Qingming, MA Xiaohe, LONG Renrong, REN Jiankang, GONG Zizheng, WU Qiang, REN Siyuan. A review of the models of near-Earth object impact cratering on Earth[J]. Explosion And Shock Waves, 2021, 41(12): 121404. doi: 10.11883/bzycj-2021-0255
Citation: LIU Wenjin, ZHANG Qingming, MA Xiaohe, LONG Renrong, REN Jiankang, GONG Zizheng, WU Qiang, REN Siyuan. A review of the models of near-Earth object impact cratering on Earth[J]. Explosion And Shock Waves, 2021, 41(12): 121404. doi: 10.11883/bzycj-2021-0255

近地小天体对地撞击成坑模型研究进展

doi: 10.11883/bzycj-2021-0255
基金项目: 民用航天预研项目(D020304)
详细信息
    作者简介:

    刘文近(1993- ),男,博士研究生,lwj931@163.com

    通讯作者:

    张庆明(1963- ),男,教授,博士生导师,qmzhang@bit.edu.cn

  • 中图分类号: O383;O303

A review of the models of near-Earth object impact cratering on Earth

  • 摘要: 近地小天体对地撞击成坑是行星研究的前沿问题之一。本文中介绍了陨石坑成坑过程与类型、实验室模拟成坑现象和陨石坑成坑模型律,分析了近地小天体对地撞击成坑机理和点源模型的不足,指出了近地小天体对地撞击成坑未来研究的发展趋势。
  • 图  1  地球撞击坑数据库世界地图

    Figure  1.  Earth impact cratering database world map

    图  2  简单坑和复杂坑形成过程的示意图[12, 19]

    Figure  2.  Series of formation of simple and complex craters[12, 19]

    图  3  简单的陨石坑[12]

    Figure  3.  Simple impact crater[12]

    图  4  复杂的陨石坑[19]

    Figure  4.  Complex impact craters[19]

    图  5  波音公司600g土工离心机[35]

    Figure  5.  The Boeing 600g geotechnical centrifuge[35]

    图  6  成坑表面压力与时间曲线[42]

    Figure  6.  The crater surface pressure versus time [42]

    图  7  钢弹丸以4.8 km/s撞击干砂岩成坑过程中抛射物的演化[45]

    Figure  7.  Typical evolution of ejecta at different times after a steel projectile impacting dry sandstone at 4.8 km /s [45]

    图  8  成坑形状与撞击速度的关系[46]

    Figure  8.  The relationship between crater shape and impact velocity[46]

    图  9  典型的半球形金属坑和剖面图[47]

    Figure  9.  Typical hemispherical metal crater and profile[47]

    图  10  岩石类陨石坑[48, 50]

    Figure  10.  Rocky impact crater[48, 50]

    图  11  不同实验拟合的经验公式曲线

    Figure  11.  Empirical formula curves fitted by different experiments

    图  12  成坑效率$ {\varPi }_{V} $${\varPi }_{2} $大小的关系示意图[53]

    Figure  12.  Schematic illustration of cratering efficiency $ {\varPi }_{V} $ depends on ${\varPi }_{2} $[53]

    表  1  公式(11)中参数

    Table  1.   The parameters value of equation (11)

    mnv*注释来源
    2/32/3$v/{c}_{{\rm{t}}}$ 文献 [62-63]
    1/22/3$v/{c}_{{\rm{t}}}$文献 [64]
    1/30.58$v/{c}_{{\rm{t}}}$文献 [65]
    2/32/3$ \sqrt{{\rho }_{\mathrm{t}}{v}^{2}/{Y}_{\mathrm{t}}} $文献 [47, 66-67]
    1/32/3$ \sqrt{{\rho }_{\mathrm{t}}{v}^{2}/{Y}_{\mathrm{t}}} $文献 [68]
    0.7252/3$ \sqrt{{\rho }_{\mathrm{t}}{v}^{2}/{Y}_{\mathrm{t}}} $文献 [69]
    0.5230.3545$ \sqrt{{\rho }_{\mathrm{t}}{v}^{2}/{Y}_{\mathrm{t}}} $文献 [55]
    0.4480.563$ \sqrt{{\rho }_{\mathrm{t}}{v}^{2}/{Y}_{\mathrm{t}}} $文献 [44]
    2/32/3$ \sqrt{{\rho }_{\mathrm{t}}{v}^{2}/{H}_{{\rm{B}}}} $$ {H}_{{\rm{B}}} $是布氏硬度文献 [70]
    0.620.48$ \sqrt{{\rho }_{\mathrm{t}}{v}^{2}/{H}_{{\rm{B}}}} $2.6 km/s$\text{<}v \text{≤}$5 km/s文献 [71]
    0.50.68$ v \text{>} $5 km/s
    下载: 导出CSV

    表  2  强度和重力机理控制下成坑变量相似律

    Table  2.   Summary of cratering variables scaling in strength and gravity regimes

    成坑结果一般形式相似点源,强度区间(假设$ Y\gg \rho ga $)点源,重力区间(假设$ \rho ga\gg Y $)
    体积$ V $$ \dfrac{\rho V}{m}=f\left(\dfrac{ga}{{U}^{2}},\dfrac{Y}{\rho {U}^{2}}\right) $$V{\propto \dfrac{m}{\rho }\left(\dfrac{Y}{\rho {U}^{2} }\right)}^{-\frac{3\mu }{2} }{\left(\dfrac{\rho }{\delta }\right)}^{1-3\nu +\frac{3\mu }{2} }$
    $V\propto \dfrac{m}{\rho }{\left(\dfrac{ga}{ {U}^{2} }\right)}^{ \frac{-3\mu }{2+\mu } }{\left(\dfrac{\rho }{\delta }\right)}^{\frac{2+\mu -6\nu }{2+\mu } }$
    半径R$R{\left(\dfrac{\rho }{m}\right)}^{{1}/{3} }=f\left(\dfrac{ga}{ {U}^{2} },\dfrac{Y}{\rho {U}^{2} }\right)$$R{ {\left(\dfrac{\rho }{m}\right)}^{ \frac{1}{3} }\propto \left(\dfrac{Y}{\rho {U}^{2} }\right)}^{-\frac{\mu }{2} }{\left(\dfrac{\rho }{\delta }\right)}^{ \frac{1}{3}-\nu +\frac{\mu }{2} }$$R{\left(\dfrac{\rho }{m}\right)}^{\frac {1}{3} }\propto {\left(\dfrac{ga}{ {U}^{2} }\right)}^{\frac {-\mu }{2+\mu } }{\left(\dfrac{\rho }{\delta }\right)}^{\frac{2+\mu -6\nu }{3\left(2+\mu \right)} }$
    深度$ h $$h{\left(\dfrac{\rho }{m}\right)}^{{1}/{3} }=f\left(\dfrac{ga}{ {U}^{2} },\dfrac{Y}{\rho {U}^{2} }\right)$$h{ {\left(\dfrac{\rho }{m}\right)}^{ \frac{1}{3} }\propto \left(\dfrac{Y}{\rho {U}^{2} }\right)}^{-\frac{\mu }{2} }{\left(\dfrac{\rho }{\delta }\right)}^{ \frac{1}{3}-\nu +\frac{\mu }{2} }$$h{\left(\dfrac{\rho }{m}\right)}^{ \frac{1}{3} }\propto {\left(\dfrac{ga}{ {U}^{2} }\right)}^{ \frac{-\mu }{2+\mu } }{\left(\dfrac{\rho }{\delta }\right)}^{\frac{2+\mu -6\nu }{3\left(2+\mu \right)} }$
    下载: 导出CSV

    表  3  各种地质材料地质材料耦合参数指数和成坑体积相似律[53]

    Table  3.   Coupling parameter exponent of various geological materials and scaling law of crater volume [53]

    材料相似指数$ \alpha $相似指数$ \ \mu $$ {K}_{1} $$ \overline{Y}/{\rm{MPa}} $强度区间1)重力区间1)强度向重力机理转换的冲击器直径/m2)
    0.510.410.240$ V=0.14{m}^{0.83}{g}^{-0.51}{U}^{1.02} $接近 0
    干土0.510.410.240.18$ V=0.04m{U}^{1.23} $$ V=0.14{m}^{0.83}{g}^{-0.51}{U}^{1.02} $0.2
    湿土0.650.550.200.14$ V=0.05m{U}^{1.65} $$ V=0.60{m}^{0.783}{g}^{-0.65}{U}^{1.3} $1.2
    0.6480.552.300$ V=13.0{m}^{0.783}{g}^{-0.65}{U}^{1.3} $接近 0
    软岩0.650.550.207.6$ V=0.009m{U}^{1.65} $$ V=0.48{m}^{0.783}{g}^{-0.65}{U}^{1.3} $11
    硬岩0.600.550.2018$ V=0.005m{U}^{1.65} $$ V=0.48{m}^{0.783}{g}^{-0.65}{U}^{1.3} $32
     1) 弹丸的质量$ m $的单位是kg,速度$ U $的单位是km/s,成坑体积$ V $的单位是m3; 2) 地球加速度下10 km/s冲击。
    下载: 导出CSV
  • [1] MARUYAMA S, EBISUZAKI T. Origin of the Earth: A proposal of new model called ABEL [J]. Geoscience Frontiers, 2017, 8(2): 253–274. DOI: 10.1016/j.gsf.2016.10.005.
    [2] PELTON J N, ALLAHDADI F. Handbook of cosmic hazards and planetary defense [M]. London: Springer, 2015: 5−13.
    [3] ALVAREZ W. Comparing the evidence relevant to impact and flood basalt at times of major mass extinctions [J]. Astrobiology, 2003, 3(1): 153–161. DOI: 10.1089/153110703321632480.
    [4] COLLINS G S, MELOSH H J, MARCUS R A. Earth impact effects program: a web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth [J]. Meteoritics & Planetary Science, 2005, 40(6): 817–840. DOI: 10.1111/j.1945-5100.2005.tb00157.x.
    [5] SCHULTE P, ALEGRET L, ARENILLAS I, et al. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary [J]. Science, 2010, 327(5970): 1214–1218. DOI: 10.1126/science.1177265.
    [6] HESTROFFER D, SÁNCHEZ P, STARON L, et al. Small solar system bodies as granular media [J]. The Astronomy and Astrophysics Review, 2019, 27(1): 6. DOI: 10.1007/s00159-019-0117-5.
    [7] 柳森, 党雷宁, 赵君尧, 等. 小行星撞击地球的超高速问题 [J]. 力学学报, 2018, 50(6): 1311–1327. DOI: 10.6052/0459-1879-18-313.

    LIU S, DANG L N, ZHAO J Y, et al. Hypervelocity issues of earth impact by asteroids [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1311–1327. DOI: 10.6052/0459-1879-18-313.
    [8] SHOEMAKER E M, WEISSMAN P R, SHOEMAKER C S. The flux of periodic comets near Earth [M]. Arizona: University of Arizona Press, 1994: 313−335.
    [9] BLAND P A, ARTEMIEVA N A. Efficient disruption of small asteroids by Earth’s atmosphere [J]. Nature, 2003, 424(6946): 288–291. DOI: 10.1038/nature01757.
    [10] WANG X Y, LUO L, GUO H D, et al. Cratering process and morphological features of the Xiuyan impact crater in Northeast China [J]. Science China Earth Sciences, 2013, 56(10): 1629–1638. DOI: 10.1007/s11430-013-4695-1.
    [11] 陈鸣, 谢先德, 肖万生, 等. 依兰陨石坑: 我国东北部一个新发现的撞击构造 [J]. 科学通报, 2020, 65(10): 948–954. DOI: 10.1360/TB-2019-0704.

    CHEN M, XIE X D, XIAO W S, et al. Yilan crater, a newly identified impact structure in northeast China [J]. China Science Bulletin, 2020, 65(10): 948–954. DOI: 10.1360/TB-2019-0704.
    [12] OSINSKI G R, PIERAZZO E. Impact cratering: processes and products [M]. Chichester: John Wiley & Sons, 2013.
    [13] GRIEVE R A F, THERRIAULT A M. Observations at terrestrial impact structures: Their utility in constraining crater formation [J]. Meteoritics & Planetary Science, 2004, 39(2): 199–216. DOI: 10.1111/j.1945-5100.2004.tb00336.x.
    [14] DYPVIK H, PLADO J, HEINBERG C, et al. Impact structures and events: a Nordic perspective [J]. Episodes, 2008, 31(1): 107–114. DOI: 10.18814/epiiugs/2008/v31i1/015.
    [15] PLADO J. Meteorite impact craters and possibly impact-related structures in Estonia [J]. Meteoritics & Planetary Science, 2012, 47(10): 1590–1605. DOI: 10.1111/j.1945-5100.2012.01422.x.
    [16] GAULT D E, QUAIDE W L, OBERBECK V R. Impact cratering mechanics and structures [M]//FRENCH B M, SHORT N M. Shock Metamorphism of Natural Materials. Mono Book Corporation, 1968: 23−24.
    [17] MELOSH H J. Impact cratering: a geologic process [M]. New York: Oxford University Press, 1989.
    [18] COLLINS G S, MELOSH H J, OSINSKI G R. The impact-cratering process [J]. Elements, 2012, 8(1): 25–30. DOI: 10.2113/gselements.8.1.25.
    [19] OSINSKI G R, TORNABENE L L, GRIEVE R A F. Impact ejecta emplacement on terrestrial planets [J]. Earth and Planetary Science Letters, 2011, 310(3−4): 167–181. DOI: 10.1016/j.jpgl.2011.08.012.
    [20] KIEFFER S W, SIMONDS C H. The role of volatiles and lithology in the impact cratering process [J]. Reviews of Geophysics, 1980, 18(1): 143–181. DOI: 10.1029/RG018i001p00143.
    [21] O’KEEFE J D, AHRENS T J. Cometary and meteorite swarm impact on planetary surfaces [J]. Journal of Geophysical Research: Solid Earth, 1982, 87(B8): 6668–6680. DOI: 10.1029/JB087iB08p06668.
    [22] PIERAZZO E, MELOSH H J. Melt production in oblique impacts [J]. Icarus, 2000, 145(1): 252–261. DOI: 10.1006/icar.1999.6332.
    [23] AHRENS T J, O’KEEFE J D. Shock melting and vaporization of Lunar rocks and minerals [J]. The Moon, 1972, 4(41): 214–249. DOI: 10.1007/bf00562927.
    [24] DENCE M R. The extraterrestrial origin of Canadian craters [J]. Annals of the New York Academy of Sciences, 1965, 123(2): 941–969. DOI: 10.1111/j.1749-6632.1965.tb20411.x.
    [25] TURTLE E P, PIERAZZO E, COLLINS G S, et al. Impact structures: what does crater diameter mean? [M]. Portland: The Geological Society of America, 2005: 1−24. DOI: 10.1130/0-8137-2384-1.1.
    [26] MELOSH H J, IVANOV B A. Impact crater collapse [J]. Annual Review of Earth and Planetary Sciences, 1999, 27(1): 385–415. DOI: 10.1146/annurev.earth.27.1.385.
    [27] PIKE R J. Control of crater morphology by gravity and target type: Mars, Earth, Moon. [C]// 11th Lunar and Planetary Science Conference. New York, USA: Pergamon Press, 1980.
    [28] PIKE R J. Size-dependence in the shape of fresh impact craters on the moon [M]. New York, USA: Pergamon Press, 1977: 489−509.
    [29] PILKINGTON M, GRIEVE R A F. The geophysical signature of terrestrial impact craters [J]. Reviews of Geophysics, 1992, 30(2): 161–181. DOI: 10.1029/92RG00192.
    [30] OSINSKI G R, BUNCH T E, FLEMMING R L, et al. Impact melt- and projectile-bearing ejecta at Barringer Crater, Arizona [J]. Earth and Planetary Science Letters, 2015, 432: 283–292. DOI: 10.1016/j.jpgl.2015.10.021.
    [31] GRIEVE R A F, GARVIN J B. A geometric model for excavation and modification at terrestrial simple impact craters [J]. Journal of Geophysical Research: Solid Earth, 1984, 89(B13): 11561–11572. DOI: 10.1029/JB089iB13p11561.
    [32] TREDOUX M, HART R J, CARLSON R W, et al. Ultramafic rocks at the center of the Vredefort structure: further evidence for the crust on edge model [J]. Geology, 1999, 27(10): 923–926.
    [33] OSINSKI G R, LEE P, SPRAY J G, et al. Geological overview and cratering model for the Haughton impact structure, Devon Island, Canadian High Arctic [J]. Meteoritics & Planetary Science, 2005, 40(12): 1759–1776. DOI: 10.1111/j.1945-5100.2005.tb00145.x.
    [34] CLARKE J, KNIGHTLY P, RUPERT S. Melt-water formed dark streaks on slopes of Haughton crater as possible Mars analogues [J]. International Journal of Astrobiology, 2019, 18: 518–526. DOI: 10.1017/S1473550418000526.
    [35] HOUSEN K R, SWEET W J, HOLSAPPLE K A. Impacts into porous asteroids [J]. Icarus, 2018, 300: 72–96. DOI: 10.1016/j.icarus.2017.08.019.
    [36] STÖFFLER D, GAULT D E, WEDEKIND J, et al. Experimental hypervelocity impact into quartz sand: distribution and shock metamorphism of ejecta [J]. Journal of Geophysical Research, 1975, 80(29): 4062–4077. DOI: 10.1029/jb080i029p04062.
    [37] GAULT D E, WEDEKIND J A. Experimental impact “craters” formed in water: gravity scaling realized [J]. Eos, Transactions-American Geophysical Union, 1978, 59(12): 1121.
    [38] KENKMANN T, DEUTSCH A, THOMA K, et al. The MEMIN research unit: Experimental impact cratering [J]. Meteoritics & Planetary Science, 2013, 48(1): 1–2. DOI: 10.1111/maps.12035.
    [39] EBERT M, HECHT L, DEUTSCH A, et al. Geochemical processes between steel projectiles and silica-rich targets in hypervelocity impact experiments [J]. Geochimica et Cosmochimica Acta, 2014, 133: 257–279. DOI: 10.1016/j.gca.2014.02.034.
    [40] HARRISS K H, BURCHELL M J. Hypervelocity impacts into ice-topped layered targets: Investigating the effects of ice crust thickness and subsurface density on crater morphology [J]. Meteoritics & Planetary Science, 2017, 52(7): 1505–1522. DOI: 10.1111/maps.12913.
    [41] HOLSAPPLE K A, SCHMIDT R M. On the scaling of crater dimensions: 1. explosive processes [J]. Journal of Geophysical Research: Solid Earth, 1980, 85(B12): 7247–7256. DOI: 10.1029/JB085iB12p07247.
    [42] SUN Y H, SHI C C, LIU Z, et al. Theoretical research progress in high-velocity/hypervelocity impact on semi-infinite targets [J]. Shock and Vibration, 2015, 2015: 265321. DOI: 10.1155/2015/265321.
    [43] 李卧东, 王明洋, 施存程, 等. 地质类材料超高速撞击相似关系与实验研究综述 [J]. 防护工程, 2015, 37(2): 55–62.

    LI W D, WANG M Y, SHI C C, et al. Review of similarity laws and scaling experiments research of hypervelocity impact on geological material targets [J]. Protective Engineering, 2015, 37(2): 55–62.
    [44] 张庆明, 黄风雷. 超高速碰撞动力学引论 [M]. 北京: 科学出版社, 2000.

    ZHANG Q M, HUANG F L. An introduction to the dynamics of hypervelocity collisions [M]. Beijing: Science Press, 2000.
    [45] HOERTH T, SCHAEFER F, THOMA K, et al. Hypervelocity impacts on dry and wet sandstone: observations of ejecta dynamics and crater growth [J]. Meteoritics & Planetary Science, 2013, 48(1): 23–32. DOI: 10.1111/maps.12044.
    [46] 经福谦. 超高速碰撞现象 [J]. 爆炸与冲击, 1990, 10(3): 279–288.

    JING F Q. Hypervelocity impact phenomena [J]. Explosion and Shock Waves, 1990, 10(3): 279–288.
    [47] 王马法, 周智炫, 黄洁, 等. 镁合金弹丸10 km/s 撞击铝靶成坑特性实验 [J]. 爆炸与冲击, 2021, 41(5): 053302. DOI: 10.11883/bzycj-2020-0129.

    WANG M F, ZHOU Z X, HUANG J, et al. Experiment on crater characteristics of aluminium targets impacted by magnesium projectiles at velocities of about 10 km/s [J]. Explosion and Shock Waves, 2021, 41(5): 053302. DOI: 10.11883/bzycj-2020-0129.
    [48] POELCHAU M H, KENKMANN T, HOERTH T, et al. Impact cratering experiments into quartzite, sandstone and tuff: The effects of projectile size and target properties on spallation [J]. Icarus, 2014, 242: 211–224. DOI: 10.1016/j.icarus.2014.08.018.
    [49] POELCHAU M H, KENKMANN T, THOMA K, et al. The MEMIN research unit: Scaling impact cratering experiments in porous sandstones [J]. Meteoritics & Planetary Science, 2013, 48(1): 8–22. DOI: 10.1111/maps.12016.
    [50] DUFRESNE A, POELCHAU M H, KENKMANN T, et al. Crater morphology in sandstone targets: The MEMIN impact parameter study [J]. Meteoritics & Planetary Science, 2013, 48(1): 50–70. DOI: 10.1111/maps.12024.
    [51] BUHL E, POELCHAU M H, DRESEN G, et al. Deformation of dry and wet sandstone targets during hypervelocity impact experiments, as revealed from the MEMIN Program [J]. Meteoritics & Planetary Science, 2013, 48(1): 71–86. DOI: 10.1111/j.1945-5100.2012.01431.x.
    [52] HOLSAPPLE K A, HOUSEN K R. Momentum transfer in asteroid impacts. Ⅰ. theory and scaling [J]. Icarus, 2012, 221(2): 875–887. DOI: 10.1016/j.icarus.2012.09.022.
    [53] HOLSAPPLE K A. The scaling of impact processes in planetary sciences [J]. Annual Review of Earth and Planetary Sciences, 1993, 21(1): 333–373. DOI: 10.1146/annurev.ea.21.050193.002001.
    [54] HOLSAPPLE K A, SCHMIDT R M. Point-Source solutions and coupling parameters in cratering mechanics [J]. Journal of Geophysical Research:Solid Earth, 1987, 92(B7): 6350–6376. DOI: 10.1029/JB092iB07p06350.
    [55] HOLSAPPLE K A, SCHMIDT R M. On the scaling of crater dimensions: 2. impact processes. [J]. Journal of Geophysical Research:Solid Earth, 1982, 87(B3): 1849–1870. DOI: 10.1029/jb087ib03p01849.
    [56] HOUSEN K R, SCHMIDT R M, HOLSAPPLE K A. Crater ejecta scaling laws: Fundamental forms based on dimensional analysis [J]. Journal of Geophysical Research:Solid Earth, 1983, 88(B3): 2485–2499. DOI: 10.1029/JB088iB03p02485.
    [57] KENKMANN T, DEUTSCH A, THOMA K, et al. Experimental impact cratering: A summary of the major results of the MEMIN research unit [J]. Meteoritics & Planetary Science, 2018, 53(8): 1543–1568. DOI: 10.1111/maps.13048.
    [58] HERRMANN W, WILBECK J S. Review of hypervelocity penetration theories [J]. International Journal of Impact Engineering, 1987, 5(1−4): 307–322. DOI: 10.1016/0734-743x(87)90048-0.
    [59] SEDGWICK R T. Numerical techniques for modeling high velocity penetration and perforation processes [J]. 1980, 5: 253−272. DOI: 10.1016/B978-0-444-41928-6.50016-8.
    [60] 向家琳. 金属材料可压缩性效应对超高速碰撞中厚靶成坑的影响 [D]. 北京: 中国科学院力学研究所, 1990.

    XIANG J L. Effect of compressibility of metal materials on craters of thick targets in hypervelocity collision [D]. Beijing: Institute of mechanics, Chinese Academy of Science, 1990.
    [61] 罗忠文. 金属材料超高速碰撞的数值模拟 [D]. 北京: 中国科学院力学研究所, 1990.

    LUO Z W. Numerical simulation of hypervelocity impact of metallic materials [D]. Beijing: Institute of Mechanics, Chinese Academy of Science, 1990.
    [62] CHRISTIANSEN E L. Design and performance equations for advanced meteoroid and debris shields [J]. International Journal of Impact Engineering, 1993, 14(1−4): 145–156. DOI: 10.1016/0734-743x(93)90016-z.
    [63] SUMMERS J L, CHARTERS A C. High speed impact of metal projectiles in targets of various materials [C]// Proceedings of the 3rd Symposium on Hypervelocity Impact. Chicago, USA, 1958.
    [64] BRUCE E P. Review and analysis of high velocity impact data [C]// Proceedings of the 5th Symposium on Hypervelocity Impact. Denver, Colorado, USA: Defense Technical Information Center, 1961.
    [65] WALSH J. On the theory of hypervelocity impact [C]// 7th Symposium on Hypervelocity Impact. Florida, USA, 1964.
    [66] CHRISTMAN D R, GEHRING J W. Analysis of high-velocity projectile penetration mechanics [J]. Journal of Applied Physics, 1966, 37(4): 1579–1587. DOI: 10.1063/1.1708570.
    [67] CHARTERS A C, SUMMERS J L. Some comments on the phenomena of high speed impact [C]// Proceedings of the Dicennial Symposium. White Oak, Maryland, USA: US Naval Ordnance Laboratory, 1959.
    [68] EICHELBERGER R J, Gehring J. W. Effects of Meteoroid Impacts on space vehicles [J]. ARS Journal, 1962, 32(10): 1583–1591. DOI: 10.2514/8.6339.
    [69] YU S B, SUN G C, TAN Q M. Experimental laws of cratering for hypervelocity impacts of spherical projectiles into thick target [J]. International Journal of Impact Engineering, 1994, 15(1): 67–77. DOI: 10.1016/s0734-743x(05)80007-7.
    [70] HERRMANN W, JONES A. Correlation of hypervelocity impact data [C]// The Fifth Symposium on Hypervelocity Impact. Denver, Colorado, USA, 1961.
    [71] 周劲松, 甄良, 杨德庄. 几种金属材料在2.6~7 km/s 弹丸撞击下的损伤行为 [J]. 宇航学报, 2000(2): 75–81. DOI: 10.3321/j.issn:1000-1328.2000.02.012.

    ZHOU J S, ZHEN L, YANG D Z. Damage behaviors of several metal materials under impacts of projectiles with hypervelocities of 2.6−7 km /s [J]. Journal of Astronautics, 2000(2): 75–81. DOI: 10.3321/j.issn:1000-1328.2000.02.012.
    [72] HOLSAPPLE K A, SCHMIDT R M. A material-strength model for apparent crater volume [C]// Proceedings of the 10th Lunar and Planetary Science Conference. 1979.
    [73] HOLSAPPLE K A. Material strength and explosive property effects in cratering and ground shock [C]// The Sixth International Symposium of Blast Simulation. Cahors, France: Centre D’ Etudesde Gramat, 1979.
    [74] HOLSAPPLE K A. The scaling of impact phenomena [J]. International Journal of Impact Engineering, 1987, 5(1−4): 343–355. DOI: 10.1016/0734-743X(87)90051-0.
    [75] SCHMIDT R M, HOLSAPPLE K A. Theory and experiments on centrifuge cratering [J]. Journal of Geophysical Research: Solid Earth, 1980, 85(B1): 235–252. DOI: 10.1029/JB085iB01p00235.
    [76] ÖPIK E J. Meteor impact on solid surface [J]. Irish Astronomical Journal, 1958, 5(1): 14–33.
    [77] SCHMIDT R M, HOUSEN K R. Some recent advances in the scaling of impact and explosion cratering [J]. International Journal of Impact Engineering, 1987, 5(1−4): 543–560. DOI: 10.1016/0734-743X(87)90069-8.
    [78] ASPHAUG E, MOORE J M, MORRISON D, et al. Mechanical and geological effects of impact cratering on Ida [J]. Icarus, 1996, 120(1): 158–184. DOI: 10.1006/icar.1996.0043.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  692
  • HTML全文浏览量:  337
  • PDF下载量:  174
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-28
  • 修回日期:  2021-08-24
  • 网络出版日期:  2021-10-28
  • 刊出日期:  2021-12-05

目录

    /

    返回文章
    返回