LI Gang, WANG Xiao-fang, YIN Shuo, LI Wen-ya. Study of incidence angle of particle on its coating formation in cold spraying[J]. Explosion And Shock Waves, 2007, 27(5): 477-480. doi: 10.11883/1001-1455(2007)05-0477-04
Citation:
LI Gang, WANG Xiao-fang, YIN Shuo, LI Wen-ya. Study of incidence angle of particle on its coating formation in cold spraying[J]. Explosion And Shock Waves, 2007, 27(5): 477-480. doi: 10.11883/1001-1455(2007)05-0477-04
LI Gang, WANG Xiao-fang, YIN Shuo, LI Wen-ya. Study of incidence angle of particle on its coating formation in cold spraying[J]. Explosion And Shock Waves, 2007, 27(5): 477-480. doi: 10.11883/1001-1455(2007)05-0477-04
Citation:
LI Gang, WANG Xiao-fang, YIN Shuo, LI Wen-ya. Study of incidence angle of particle on its coating formation in cold spraying[J]. Explosion And Shock Waves, 2007, 27(5): 477-480. doi: 10.11883/1001-1455(2007)05-0477-04
Based on developed numerical simulation method, the impacting behavior of copper particle colliding copper substrate in process of transforming material property is investigated. The join strength, penetration depth and condition of emerging adiabatic shear instability are discussed with single particle of uniform speed and different angle. It is revealed that with increasing incidence angle, the penetration depth decreases and the join strength is weakened. Adiabatic shear instability will take place when the normal component of particle velocity excesses critical value.