The high-amplitude single-mode Richtmyer-Meshkov instability is simulated by using the high-resolution ghost-fluid method. The initial conditions and computational domain are modeled after the single-mode, 1.15-Mach, shock tube experiment by Jourdan G, et al. Four test examples are presented with the evolutions of the air-CO2, air-SF6, air-N2 and air-He interfaces, including density and shading contours. The simulated amplitudes are in agreement with the experimental data and the predictions of the theoretical models. The perturbation growths for the light-heavy (air-SF6 and air-CO2) cases agree well with the nonlinear model of Sadot O, et al. At the close density (air-N2) interface acting with the weak shock wave, the slow evolution can be described by the linear theory.