Volume 34 Issue 2
May  2014
Turn off MathJax
Article Contents
Lu Zi-xing, Li Kang. Numerical simulation on dynamic crushing behaviors of tetrachiral honeycombs[J]. Explosion And Shock Waves, 2014, 34(2): 181-187. doi: 10.11883/1001-1455(2014)02-0181-07
Citation: Lu Zi-xing, Li Kang. Numerical simulation on dynamic crushing behaviors of tetrachiral honeycombs[J]. Explosion And Shock Waves, 2014, 34(2): 181-187. doi: 10.11883/1001-1455(2014)02-0181-07

Numerical simulation on dynamic crushing behaviors of tetrachiral honeycombs

doi: 10.11883/1001-1455(2014)02-0181-07
Funds:  Supported by National Natural Science Foundationof China (10932001, 11272030)
More Information
  • Corresponding author: Lu Zi-xing, luzixing@buaa.edu.cn
  • Received Date: 2012-09-13
  • Rev Recd Date: 2013-03-29
  • Publish Date: 2014-03-25
  • A finite element model was developed for tetrachiral honeycombs.By using the developed model, numerical simulations were conducted to explore the deformation modes and energy absorption properties of the tetrachiral honeycombs subjected to different impact velocities.And the corresponding numerical simulations were carried out on hexagonal honeycombs by applying the existent model.The deformation mode diagrams and the dynamic response curves for two kinds of honeycombs were obtained.At low impact velocities, the deformation of tetrachiral honeycombs is of"Z"mode.At high impact velocities, "I"deformation mode is observed in tetrachiral honeycombs when crushing, which is similar to traditional honeycombs.And a transitional deformation mode is present in tetrachiral honeycombs subjected to moderate impact velocities.As the impact velocity increases, the localized bands transit from the fixed end to the impact end and the tetrachiral honeycombs display higher energy absorption capacities.When the velocity is low or moderate, the auxetic honeycombs display the unique shrinkage under dynamic compression.
  • loading
  • [1]
    Gibson L J, Ashby M F. Cellular solids: Structure and properties[M]. 2nd ed. Cambridge: Cambridge University Press, 1997.
    [2]
    Liu Q. Literature review: Materials with negative poisson's ratios and potential applications to aerospace and defence[R]. Victoria, Australia: Defence Science and Technology Organisation, 2006.
    [3]
    Alderson A, Alderson K L. Auxetic materials[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2007, 221: 565-575. doi: 10.1243/09544100JAERO185
    [4]
    卢子兴, 刘强, 杨振宇.拉胀泡沫材料力学性能[J].宇航材料工艺, 2010(1): 7-13.

    Lu Zi-xing, Liu Qiang, Yang Zhen-yu. Mechanical properties of auxetic foams[J]. Aerospace Materials & Technology, 2010(1): 7-13.
    [5]
    Prawoto Y. Seeing auxetic materials from the mechanics point of view: A structural review on the negative Poisson's ratio[J]. Composites Science and Technology, 2012, 58: 140-153. https://www.sciencedirect.com/science/article/pii/S092702561200078X
    [6]
    卢子兴, 郭宇.金属泡沫材料力学行为的研究概述[J].北京航空航天大学学报, 2003, 29(11): 978-983. doi: 10.3969/j.issn.1001-5965.2003.11.005

    Lu Zi-xing, Guo Yu. Brief review of studies on the mechanical behavior of metallic foams[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(11): 978-983. doi: 10.3969/j.issn.1001-5965.2003.11.005
    [7]
    刘颖, 何章权, 吴鹤翔, 等.分层递变梯度蜂窝材料的面内冲击性能[J].爆炸与冲击, 2011, 31(3): 225-231. doi: 10.11883/1001-1455(2011)03-0225-07

    Liu Ying, He Zhang-quan, Wu He-xiang, et al. In-plane dynamic crushing of functionally layered metal honeycombs[J]. Explosion and Shock Waves, 2011, 31(3): 225-231. doi: 10.11883/1001-1455(2011)03-0225-07
    [8]
    Amin A, Hamid N H, Ashkan V. Dynamic crushing and energy absorption of regular, irregular and functionally graded cellular structures[J]. International Journal of Solids and Structures, 2011, 48(3/4): 506-516. https://www.sciencedirect.com/science/article/pii/S0020768310003720
    [9]
    Prall D, Lakes R S. Properties of a chiral honeycomb with a Poisson's ratio of-1[J]. International Journal of Mechanical and Science, 1996, 39(3): 305-314. https://www.sciencedirect.com/science/article/pii/S0020740396000252
    [10]
    Alderson A, Alderson K L, Attard D, et al. Elastic constants of 3-, 4-and 6-connected chiral and antichiral honeycombs subject to uniaxial in-plane loading[J]. Composites Science and Technology, 2010, 70(7): 1042-1048. doi: 10.1016/j.compscitech.2009.07.009
    [11]
    Spadoni A, Ruzzene M. Elasto-static micropolar behavior of a chiral auxetic lattice[J]. Journal of the Mechanics and Physics of Solids, 2012, 60(1): 156-171. doi: 10.1016/j.jmps.2011.09.012
    [12]
    Dos Reis F, Ganghoffer J F. Equivalent mechanical properties of auxetic lattices from discrete homogenization[J]. Computational Materials Science, 2012, 51(1): 314-321. doi: 10.1016/j.commatsci.2011.07.014
    [13]
    Dirrenberger J, Forest S, Jeulin D, et al. Homogenization of periodic auxetic materials[J]. Procedia Engineering, 2011, 10: 1847-1852. doi: 10.1016/j.proeng.2011.04.307
    [14]
    卢子兴, 赵亚斌.一种有负泊松比效应的二维多胞材料力学模型[J].北京航空航天大学学报, 2006, 32(5): 594-597. doi: 10.3969/j.issn.1001-5965.2006.05.022

    Lu Zi-xing, Zhao Ya-bin. Mechanical model of two-dimensional cellular materials with negative Poisson's ratio[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(5): 594-597. doi: 10.3969/j.issn.1001-5965.2006.05.022
    [15]
    Ruan D, Lu G, Wang B, et al. In-plane dynamic crushing of honeycombs: A finite element study[J]. International Journal of Impact Engineering, 2003, 28(2): 161-182. doi: 10.1016/S0734-743X(02)00056-8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (3443) PDF downloads(497) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return