Volume 35 Issue 1
Feb.  2015
Turn off MathJax
Article Contents
Liu Lei-lei, Zhang Shao-he, Wang Xiao-mi, Hao Zhi-bin. Application of target approaching with variable weight in prediction of rockburst intensity[J]. Explosion And Shock Waves, 2015, 35(1): 43-50. doi: 10.11883/1001-1455(2015)01-0043-08
Citation: Liu Lei-lei, Zhang Shao-he, Wang Xiao-mi, Hao Zhi-bin. Application of target approaching with variable weight in prediction of rockburst intensity[J]. Explosion And Shock Waves, 2015, 35(1): 43-50. doi: 10.11883/1001-1455(2015)01-0043-08

Application of target approaching with variable weight in prediction of rockburst intensity

doi: 10.11883/1001-1455(2015)01-0043-08
  • Received Date: 2013-05-03
  • Rev Recd Date: 2013-07-31
  • Publish Date: 2015-01-25
  • According to the uncertainty of rock burst intensity prediction and the incompatible problem of the single index which mainly influences the rock burst, a method combining variable weight theory with the degree of target approaching is proposed to make prediction of rock burst intensity. First, considering the preference degree of the judge, a variable weight model is given to calculate the weights of indexes based on a balance function. Second, this method constructs an interval incidence function, and the maximum value of incidence function for single index is used to be the target, so the rock burst intensity can be predicted based on the degree of approaching between samples and targets-the larger degree of the target approaching, the higher intensity of the rock burst. Finally, this method is applied to Dongyu rock mine in Lingbao, Dongguashan rock mine and Qinling Tunnel rock burst, and the results show that it can predict the rock burst intensity correctly and reasonably. What's more, compared with other methods like Bayes discriminant analysis method and distance discriminant analysis method(DDA), it doesn't need any prior knowledge, and so is very direct and convenient for calculation. Therefore, this method is worthy of promotion and application.
  • loading
  • [1]
    高玮, 张飞君.深部地下工程岩爆预测的筛选蚁群聚类算法[J].爆炸与冲击, 2012, 32(6): 568-572.

    Gao Wei, Zhang Fei-jun. Forecasting of rockburst in deep underground engineering based on abstraction ant colony clustering algorithm[J]. Explosion and Shock Waves, 2012, 32(6): 568-572.
    [2]
    刘晓辉, 吴爱祥, 王春来, 等.某深井矿山岩爆预测模式研究[J].采矿与安全工程学报, 2012, 29(1): 78-83.

    Liu Xiao-hui, Wu Ai-xiang, Wang Chun-lai, et al. Study on rockburst forecasting prediction in a deep mine[J]. Journal of Mining & Safety Engineering, 2012, 29(1): 78-83.
    [3]
    张志龙, 李天斌, 王兰生, 等.雪峰山隧道岩爆问题预测研究[J].煤田地质与勘探, 2005, 33(1): 58-60.

    Zhang Zhi-long, Li Tian-bin, Wang Lang-sheng, et al. Predictive of rockburst in the Xuefeng mountain express highway tunnel[J]. Coal Geology & Exploration, 2005, 33(1): 58-60.
    [4]
    罗磊, 曹平.深部巷道岩爆加权距离判别法模型的分析和应用[J].中南大学学报:自然科学版, 2012, 43(10): 3971-3975.

    Luo Lei, Cao Ping. Model of weighted distance discriminant analysis and application for deep roadway[J]. Journal of Central South University: Science and Technology, 2012, 43(10): 3971-3975.
    [5]
    冯夏庭, 陈炳瑞, 明华军, 等.深部隧洞岩爆孕育规律与机制:即时型岩爆[J].岩石力学与工程学报, 2012, 31(3): 433-444.

    Feng Xia-ting, Chen Bing-rui, Ming Hua-jun, et al. Evolution law and mechanism of rockbursts in deep tunnels: Immediate rockburst[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 433-444.
    [6]
    宫凤强, 李夕兵.岩爆发生和烈度分级预测的距离判别方法及应用[J].岩石力学与工程学报, 2007, 26(5): 1012-1018.

    Gong Feng-qiang, Li Xi-bing. A distance distancenant analysis method for prediction of possibility and classification of rockburst and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(5): 1012-1018.
    [7]
    孙旭宁, 赵国斌, 张国泉.岩爆的影响因素分析与预测[J].施工技术, 2012, 41(367): 60-63.

    Sun Xu-ning, Zhao Guo-bin, Zhang Guo-quan. Analysis of influencing factors and prediction on rockburst[J]. Construction Technology, 2012, 41(367): 60-63.
    [8]
    Kidybinski A. Bursting liability indices of coal[J]. International Journal of Rock Mechanics and Mining Sciences, 1981, 18(6): 295-304. https://www.sciencedirect.com/science/article/pii/0148906281911943
    [9]
    赵本钓.冲击地压及其防治[M].北京: 煤炭工业出版社, 1995: 241-245.
    [10]
    唐礼忠, 潘长良, 王文星.用于分析岩爆倾向性的剩余能量指数[J].中南工业大学学报, 2002, 33(2): 129-132.

    Tang Li-zhong, Pan Chang-liang, Wang Wen-xing. Surplus energy index for analysing rock burst proneness[J]. Journal of Central South University of Technology, 2002, 33(2): 129-132.
    [11]
    王元汉, 李卧东, 李启光, 等.岩爆预测的模糊数学综合评判方法[J].岩石力学与工程学报, 1998, 17(5): 493-501.

    Wang Yuan-han, Li Wo-dong, Li Qi-guang, et al. Method of fuzzy comprehensive evaluations for rockburst prediction[J]. Chinese Journal of Rock Mechanics and Engineering, 1998, 17(5): 493-501.
    [12]
    夏连学, 张慧颖.变权靶心贴近度在膨胀土分类中的应用[J].长安大学学报:自然科学版, 2008, 28(4): 32-34.

    Xia Lian-xue, Zhang Hui-ying. Application of target approaching in variable weight to expansive soil classification[J]. Journal of Chang'an University: Natural Science Edition, 2008, 28(4): 32-34.
    [13]
    张勇慧, 李红旭, 盛谦, 等.基于模糊综合评判的公路岩质边坡稳定性分级研究[J].岩土力学, 2010, 31(10): 3151-3156.

    Zhang Yong-hui, Li Hong-xu, Sheng Qian, et al. Study of stability gradation of highway rock slopes based on fuzzy comprehensive evaluation[J]. Rock and Soil Mechanics, 2010, 31(10): 3151-3156.
    [14]
    刘文奇.均衡函数及其在变权综合中的应用[J].系统工程理论与实践, 1997, 17(4): 58-64.

    Liu Wen-qi. Balanced function and its application for variable weight synthesizing[J]. Systems Engineering-Theory & Practice, 1997, 17(4): 58-64.
    [15]
    付玉华, 董陇军.岩爆预测的Bayes判别模型及应用[J].中国矿业大学学报, 2009, 38(4): 528-533.

    Fu Yu-hua, Dong Long-jun. Bayes discriminant analysis model and its application to the prediction and classification of rockburst[J]. Journal of China University of Mining & Technology, 2009, 38(4): 528-533.
    [16]
    白明洲, 王连俊, 许兆义.岩爆危险性预测的神经网络模型及应用研究[J].中国安全科学学报, 2002, 12(4): 65-69.

    Bai Ming-zhou, Wang Lian-jun, Xu Zhao-yi. Study on a neutral network model and its application to predict the risk of rock blast[J]. China Safety Science Journal, 2002, 12(4): 65-69.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(12)

    Article Metrics

    Article views (3083) PDF downloads(442) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return