Citation: | Lin Bai-quan, Hong Yi-du, Zhu Chuan-jie, Jiang Bing-you, Liu Qian, Sun Yu-min. Quantitative relationship between flow speed and overpressure of gas explosion in the open-end square tube[J]. Explosion And Shock Waves, 2015, 35(1): 108-115. doi: 10.11883/1001-1455(2015)01-0108-08 |
[1] |
Fletcher B. The interaction of a shock with a dust deposit[J]. Journal of Physics, D: Applied Physics, 1976, 9(2): 197-202. http://adsabs.harvard.edu/abs/1976JPhD....9..197F
|
[2] |
Kuznetsov M, Alekseev V, Matsukov I, et al. DDT in a smooth tube filled with a hydrogen-oxygen mixture[J]. Shock Waves, 2005, 14(3): 205-215. doi: 10.1007/s00193-005-0265-6
|
[3] |
Ilbas M, Crayford A P, Ylmaz I, et al. Laminar-burning velocities of hydrogen-air and hydrogen-methane-air mixtures: An experimental study[J]. International Journal of Hydrogen Energy, 2006, 31(12): 1768-1779. http://www.sciencedirect.com/science/article/pii/S0360319905003940
|
[4] |
Johansen C T, Ciccarelli G. Visualization of the unburned gas flow field ahead of an accelerating flame in an obstructed square channel[J]. Combustion and Flame, 2009, 156(2): 405-416. http://www.sciencedirect.com/science/article/pii/S0010218008002290
|
[5] |
Ciccarelli G, Johansen C T, Parravani M. The role of shock-flame interactions on flame acceleration in an obstacle laden channel[J]. Combustion and Flame, 2010, 157(11): 2125-2136. http://www.sciencedirect.com/science/article/pii/S0010218010001276
|
[6] |
Ciccarelli G, Johansen C T, Parravani M. The role of shock-flame interactions on flame acceleration in an obstacle laden channel[J]. Combustion and Flame, 2010, 157(11): 2125-2136. http://www.sciencedirect.com/science/article/pii/S0010218010001276
|
[7] |
Ciccarelli G, Dorofeev S. Flame acceleration and transition to detonation in ducts[J]. Progress in Energy and Combustion Science, 2008, 34(4): 499-550. http://www.sciencedirect.com/science/article/pii/S0360128507000639
|
[8] |
杨书召, 景国勋, 贾智伟.矿井瓦斯爆炸冲击气流伤害研究[J].煤炭学报, 2009, 34(10): 1354-1358. http://www.cnki.com.cn/Article/CJFDTotal-MTXB200910012.htm
Yang Shu-zhao, Jing Guo-xun, Jia Zhi-wei. Injury study on impact current of gas explosion in coal mine[J]. Journal of China Coal Society, 2009, 34(10): 1354-1358. http://www.cnki.com.cn/Article/CJFDTotal-MTXB200910012.htm
|
[9] |
Zhu C J, Lin B Q, Hong Y D, et al. Numerical simulations on relationships between gas velocity and overpressure of gas explosions in ducts[J]. Disaster Advances, 2013, 6(S1): 217-227.
|
[10] |
Lin B Q, Hong Y D, Zhu C J, et al. Effect of length on the relationships between the gas velocity and peak overpressure of gas explosion disasters in closed-end pipes[J]. Disaster Advances, 2013, 6(S2): 176-184. http://www.researchgate.net/publication/296754996_Effect_of_length_on_the_relationships_between_the_gas_velocity_and_peak_overpressure_of_gas_explosion_disasters_in_closed-end_pipes
|
[11] |
Jiang B Y, Lin B Q, Shi S L, et al. A numerical simulation of the influence initial temperature has on the propagation characteristics of, and safe distance from, a gas explosion[J]. International Journal of Mining Science and Technology, 2012, 22(3): 307-310. http://www.sciencedirect.com/science/article/pii/S2095268612000717
|
[12] |
Maremonti M, Russo G, Salzano E, et al. Numerical simulation of gas explosions in linked vessels[J]. Journal of Loss Prevention in the Process Industries, 1999, 12(3): 189-194. http://www.sciencedirect.com/science/article/pii/S0950423098000618
|
[13] |
Pang L, Zhang Q, Wang T, et al. Influence of laneway support spacing on methane/air explosion shock wave[J]. Safety Science, 2012, 50(1): 83-89. http://www.sciencedirect.com/science/article/pii/S0925753511001524
|
[14] |
Janovsky B, Selesovsky P, Horkel J, et al. Vented confined explosions in Stramberk experimental mine and AutoReaGas simulation[J]. Journal of Loss Prevention in the Process Industries, 2006, 19(2): 280-287. http://www.sciencedirect.com/science/article/pii/S0950423005001439
|
[15] |
Bray K N C. Studies of the turbulent burning velocity[J]. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 1990, 431(1882): 315-335.
|
[16] |
Mercx W P M, Van den Berg A C, Hayhurst C J, et al. Developments in vapour cloud explosion blast modeling[J]. Journal of Hazardous Materials, 2000, 71(1): 301-319. http://www.onacademic.com/detail/journal_1000034187868010_f52b.html
|
[17] |
Bakke J R. Numerical simulation of gas explosions in two-dimensional geometries[J]. Christian Michelsen Institute, 1986: 865403-865408. http://www.zhangqiaokeyan.com/ntis-science-report_other_thesis/020711401046.html
|
[18] |
AutoReaGas user manual version 3.1[Z]. England: Century Dynamics and TNO, 2002.
|
[19] |
Zipf R K, Sapko M J, Brune J F. Explosion pressure design criteria for new seals in US coal mines[S]. 2007.
|
[20] |
Lea C J, Ledin H S. A review of the state-of-the-art in gas explosion modelling[M]. Health and Safety Laboratory, 2002.
|
[21] |
Salzano E, Marra F S, Russo G, et al. Numerical simulation of turbulent gas flames in tubes[J]. Journal of Hazardous Materials, 2002, 95(3): 233-247. http://www.ncbi.nlm.nih.gov/pubmed/12423940
|
[22] |
吴望一.流体力学(下册)[M].北京: 北京大学出版社, 2011: 414-432.
|
[23] |
Baker W E, Cox P A, Kulesz J J, et al. Explosion hazards and evaluation[M]. Access Online via Elsevier, 1983.
|
1. | 张保勇,陶金,崔嘉瑞,张义宇,王亚军,韩永辉,孙曼. 波纹结构迎爆面泡沫金属对甲烷-空气混合气体爆炸能量的吸收特性. 爆炸与冲击. 2023(11): 168-179 . ![]() | |
2. | 王浩,张泉,汪宝发. 基于属性数学理论的矿井瓦斯爆炸危险性预测. 内蒙古煤炭经济. 2022(05): 1-5 . ![]() | |
3. | 王春林,杜鹃. 瓦斯爆炸冲击波在不同通风管网中的传播规律试验研究. 建井技术. 2021(04): 32-38+26 . ![]() | |
4. | 杨前意,石必明,张雷林,张鸿智,王超. 不同含水率煤尘在瓦斯爆炸诱导下爆炸传播规律研究. 中国安全生产科学技术. 2019(03): 25-29 . ![]() | |
5. | 杨前意,石必明,张雷林,王超,张鸿智. 拐弯角度对瓦斯爆炸诱导煤尘爆炸的影响研究. 中国安全科学学报. 2019(07): 58-63 . ![]() | |
6. | 李祥春,聂百胜,杨春丽,陈金伟. 封闭空间内瓦斯浓度对瓦斯爆炸反应动力学特性的影响. 高压物理学报. 2017(02): 135-147 . ![]() | |
7. | 周宁,耿莹,冯磊,刘超,张冰冰. 点火能对气体爆炸过程中薄壁管道应变规律的实验研究(英文). 高压物理学报. 2016(03): 200-206 . ![]() | |
8. | 聂百胜,杨龙龙,孟筠青,何学秋. 基于图像处理的管道瓦斯爆炸火焰传播速度特征. 煤炭学报. 2016(04): 884-891 . ![]() |