Volume 37 Issue 4
May  2017
Turn off MathJax
Article Contents
Lu Yinchen, Tao Gang, Zhang Lijing. Analysis and theoretical calculation of explosion characteristics of methane-air mixture in a spherical vessel[J]. Explosion And Shock Waves, 2017, 37(4): 773-778. doi: 10.11883/1001-1455(2017)04-0773-06
Citation: Lu Yinchen, Tao Gang, Zhang Lijing. Analysis and theoretical calculation of explosion characteristics of methane-air mixture in a spherical vessel[J]. Explosion And Shock Waves, 2017, 37(4): 773-778. doi: 10.11883/1001-1455(2017)04-0773-06

Analysis and theoretical calculation of explosion characteristics of methane-air mixture in a spherical vessel

doi: 10.11883/1001-1455(2017)04-0773-06
  • Received Date: 2015-12-28
  • Rev Recd Date: 2016-03-30
  • Publish Date: 2017-07-25
  • To study the characteristics of the methane-air mixture exploding in a closed spherical container, we determined the appropriate combustion products and chemical equilibrium temperature using the chemical equilibrium calculation software, thereby predicting the maximum explosion pressure of the mixture. The MATLAB program based on the flame growth model was adopted to calculate the curve showing the relationship between the explosion pressure and time. The calculation processes were verified by the comparison of the obtained results with the experimental data, and the origin of the error was also identified. Further, it is found that the empirical formula of the deflagration index KG derived from the flame growth model is well fitted with the experimental date near the chemical equivalent line.
  • loading
  • [1]
    Bradley D, Mitcheson A. Mathematical solutions for explosions in spherical vessels[J]. Combustion and Flame, 1976, 26(2):201-217. doi: 10.1016-0010-2180(76)90072-9/
    [2]
    Dahoe A E, Zevenbergen J F, Lemkowitz S M, et al. Dust explosion in spherical vessels: The role of flame thickness in the validity of the cube-root law[J]. Journal of Loss Prevention in the Process Industries, 1996, 18(9):33-44. http://cn.bing.com/academic/profile?id=1e68f2b1c6bc3ebba8fec56275eed030&encoded=0&v=paper_preview&mkt=zh-cn
    [3]
    Mashuga C V, Crowl D A. Flammability zone prediction using calculated adiabatic flame temperatures[J]. Process Safety Progress, 1999, 18(3):127-134. doi: 10.1002/(ISSN)1547-5913
    [4]
    Bulck E V D. Closed algebraic expressions for the adiabatic limit value of the explosion constant in closed volume combustion[J]. Journal of Loss Prevention in the Process Industries, 2005, 18(1):35-42. doi: 10.1016/j.jlp.2004.10.004
    [5]
    Jo Y D, Crowl D A. Flame growth model for confined gas explosion[J]. Process Safety Progress, 2009, 28(2):141-146. doi: 10.1002/prs.v28:2
    [6]
    Jo Y D, Crowl D A. Explosion characteristics of hydrogen-air mixtures in a spherical vessel[J]. Process Safety Progress, 2010, 29(3):216-223. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c97034bf2a15a249e466d1413a6d3eaf
    [7]
    Tao G, Crowl D A. Comparison of the maximum gas combustion pressure of hydrogen/oxygen/nitrogen between chemical equilibrium calculations and experimental data[J]. Procedia Engineering, 2013, 62:786-790. doi: 10.1016/j.proeng.2013.08.126
    [8]
    Dandy D S. Bioanalytical microfluidics program[EB/OL].[2015-12-28]. http: //navier.engr.colostate.edu/tools/equil.html.
    [9]
    Du J G, Ma H H, Qu Z W, et al. Prediction of methanés flammability using chemical equilibrium[J]. Process Safety Progress, 2015, 34(1):31-35. doi: 10.1002/prs.v34.1
    [10]
    Cashdollar K L, Zlochower I A, Green G M, et al. Flammability of methane, propane, and hydrogen gases[J]. Journal of Loss Prevention in the Process Industries, 2000, 13(3):327-340. http://cn.bing.com/academic/profile?id=da436dded3b969fe41d723e91798c068&encoded=0&v=paper_preview&mkt=zh-cn
    [11]
    Van Maaren A, Thung D S, De Goey L P H. Measurement of flame temperature and adiabatic burning velocity of methane/air mixtures[J]. Combustion Science and Technology, 1994, 96(4/5/6):327-344. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/00102209408935360
    [12]
    Dahoe A E, De Goey L P H. On the determination of the laminar burning velocity from closed vessel gas explosions[J]. Journal of Loss Prevention in the Process Industries, 2003, 16(6):457-478. doi: 10.1016/S0950-4230(03)00073-1
    [13]
    Varea E, Modica V, Vandel A, et al. Measurement of laminar burning velocity and Markstein length relative to fresh gases using a new postprocessing procedure: Application to laminar spherical flames for methane, ethanol and isooctane/air mixtures[J]. Combustion and Flame, 2012, 159(2):577-590. doi: 10.1016/j.combustflame.2011.09.002
    [14]
    Chen Z. On the accuracy of laminar flame speeds measured from outwardly propagating spherical flames: Methane/air at normal temperature and pressure[J]. Combustion and Flame, 2015, 162(6):2442-2453. doi: 10.1016/j.combustflame.2015.02.012
    [15]
    Bulck E V D. Closed algebraic expressions for the adiabatic limit value of the explosion constant in closed volume combustion[J]. Journal of Loss Prevention in the Process Industries, 2005, 18(1):35-42. doi: 10.1016/j.jlp.2004.10.004
    [16]
    Benedetto A D, Cammarota F, Sarli V D, et al. Anomalous behavior during explosions of CH4 in oxygen-enriched air[J]. Combustion and Flame, 2011, 158(11):2214-2219. doi: 10.1016/j.combustflame.2011.03.015
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (4304) PDF downloads(442) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return