Citation: | Lu Yinchen, Tao Gang, Zhang Lijing. Analysis and theoretical calculation of explosion characteristics of methane-air mixture in a spherical vessel[J]. Explosion And Shock Waves, 2017, 37(4): 773-778. doi: 10.11883/1001-1455(2017)04-0773-06 |
[1] |
Bradley D, Mitcheson A. Mathematical solutions for explosions in spherical vessels[J]. Combustion and Flame, 1976, 26(2):201-217. doi: 10.1016-0010-2180(76)90072-9/
|
[2] |
Dahoe A E, Zevenbergen J F, Lemkowitz S M, et al. Dust explosion in spherical vessels: The role of flame thickness in the validity of the cube-root law[J]. Journal of Loss Prevention in the Process Industries, 1996, 18(9):33-44. http://cn.bing.com/academic/profile?id=1e68f2b1c6bc3ebba8fec56275eed030&encoded=0&v=paper_preview&mkt=zh-cn
|
[3] |
Mashuga C V, Crowl D A. Flammability zone prediction using calculated adiabatic flame temperatures[J]. Process Safety Progress, 1999, 18(3):127-134. doi: 10.1002/(ISSN)1547-5913
|
[4] |
Bulck E V D. Closed algebraic expressions for the adiabatic limit value of the explosion constant in closed volume combustion[J]. Journal of Loss Prevention in the Process Industries, 2005, 18(1):35-42. doi: 10.1016/j.jlp.2004.10.004
|
[5] |
Jo Y D, Crowl D A. Flame growth model for confined gas explosion[J]. Process Safety Progress, 2009, 28(2):141-146. doi: 10.1002/prs.v28:2
|
[6] |
Jo Y D, Crowl D A. Explosion characteristics of hydrogen-air mixtures in a spherical vessel[J]. Process Safety Progress, 2010, 29(3):216-223. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c97034bf2a15a249e466d1413a6d3eaf
|
[7] |
Tao G, Crowl D A. Comparison of the maximum gas combustion pressure of hydrogen/oxygen/nitrogen between chemical equilibrium calculations and experimental data[J]. Procedia Engineering, 2013, 62:786-790. doi: 10.1016/j.proeng.2013.08.126
|
[8] |
Dandy D S. Bioanalytical microfluidics program[EB/OL].[2015-12-28]. http: //navier.engr.colostate.edu/tools/equil.html.
|
[9] |
Du J G, Ma H H, Qu Z W, et al. Prediction of methanés flammability using chemical equilibrium[J]. Process Safety Progress, 2015, 34(1):31-35. doi: 10.1002/prs.v34.1
|
[10] |
Cashdollar K L, Zlochower I A, Green G M, et al. Flammability of methane, propane, and hydrogen gases[J]. Journal of Loss Prevention in the Process Industries, 2000, 13(3):327-340. http://cn.bing.com/academic/profile?id=da436dded3b969fe41d723e91798c068&encoded=0&v=paper_preview&mkt=zh-cn
|
[11] |
Van Maaren A, Thung D S, De Goey L P H. Measurement of flame temperature and adiabatic burning velocity of methane/air mixtures[J]. Combustion Science and Technology, 1994, 96(4/5/6):327-344. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/00102209408935360
|
[12] |
Dahoe A E, De Goey L P H. On the determination of the laminar burning velocity from closed vessel gas explosions[J]. Journal of Loss Prevention in the Process Industries, 2003, 16(6):457-478. doi: 10.1016/S0950-4230(03)00073-1
|
[13] |
Varea E, Modica V, Vandel A, et al. Measurement of laminar burning velocity and Markstein length relative to fresh gases using a new postprocessing procedure: Application to laminar spherical flames for methane, ethanol and isooctane/air mixtures[J]. Combustion and Flame, 2012, 159(2):577-590. doi: 10.1016/j.combustflame.2011.09.002
|
[14] |
Chen Z. On the accuracy of laminar flame speeds measured from outwardly propagating spherical flames: Methane/air at normal temperature and pressure[J]. Combustion and Flame, 2015, 162(6):2442-2453. doi: 10.1016/j.combustflame.2015.02.012
|
[15] |
Bulck E V D. Closed algebraic expressions for the adiabatic limit value of the explosion constant in closed volume combustion[J]. Journal of Loss Prevention in the Process Industries, 2005, 18(1):35-42. doi: 10.1016/j.jlp.2004.10.004
|
[16] |
Benedetto A D, Cammarota F, Sarli V D, et al. Anomalous behavior during explosions of CH4 in oxygen-enriched air[J]. Combustion and Flame, 2011, 158(11):2214-2219. doi: 10.1016/j.combustflame.2011.03.015
|