Volume 38 Issue 4
May  2018
Turn off MathJax
Article Contents
XIAO Chenghuan, LU Zhaijun. Numerical simulation of launching process of air gun impact test-bed[J]. Explosion And Shock Waves, 2018, 38(4): 931-936. doi: 10.11883/bzycj-2016-0378
Citation: XIAO Chenghuan, LU Zhaijun. Numerical simulation of launching process of air gun impact test-bed[J]. Explosion And Shock Waves, 2018, 38(4): 931-936. doi: 10.11883/bzycj-2016-0378

Numerical simulation of launching process of air gun impact test-bed

doi: 10.11883/bzycj-2016-0378
  • Received Date: 2016-12-13
  • Rev Recd Date: 2017-03-13
  • Publish Date: 2018-07-25
  • We simulated the launching progress of SSAGIT using the computational fluid dynamics (CFD) and the velocity of the impact car obtained from calculation are consistent with the experiment results. Based on this, we investigated the flow field, the pressure in the front and back of the car, and the pressure of the gasholder. The results showed that the launch field was filled with the leakage gas before the arrival of the impact car, causing the development of an initial flow field, and the alternatively positive and negative variations of the pressure in the front of the car, but its influence on the acceleration process was negligible because of its small value. In addition, the acceleration was maintained due to the effect of the jet after the impacted car entered the decompression part, and the increment was about 2 m/s.
  • loading
  • [1]
    陈大年.二级轻气炮内弹道的数值模拟与性能分析[J].爆炸与冲击, 1989, 9(1):37-42. http://www.bzycj.cn/CN/abstract/abstract10869.shtml

    CHEN DANIAN. Numerical simulation and performance analysis of the two-stage light gun[J]. Explosion and Shock Waves, 1989, 9(1):37-42. http://www.bzycj.cn/CN/abstract/abstract10869.shtml
    [2]
    FRANCESCONI A, PAVARIN D, BETTELLA A, et al. A special design condition to increase the performance of two-stage light-gas guns[J]. International Journal of Impact Engineering, 2008, 35(12):1510-1515. doi: 10.1016/j.ijimpeng.2008.07.035
    [3]
    SIEGEL A E. The theory of high speed guns: AD475660[R]. France: Advisory Group for Aerospace Research and Development, 1965.
    [4]
    SHEPPARD L M. Theory of transonic gas gun[R]. Australia: Defense Science and Technology Organization Weapons Research Establishment, 1977: 1-14.
    [5]
    HUTCHINGS I M, ROCHESTER M C, CAMUS J J. A rectangular-bore gas gun[J]. Journal of Physics E: Scientific Instruments, 1977, 10(5):455-457. doi: 10.1088/0022-3735/10/5/012
    [6]
    张来平, 邓小刚, 张涵信.动网格生成技术及非定常计算方法进展综述[J].力学进展, 2010, 40(4):424-447. doi: 10.6052/1000-0992-2010-4-J2009-123

    ZHANG Laiping, DENG Xiaogang, ZHANG Hanxin. Reviews of moving grid generation techniques and numerical methods for unsteady flows[J]. Advances in mechanics, 2010, 40(4):424-447. doi: 10.6052/1000-0992-2010-4-J2009-123
    [7]
    QIN Q Y, ZHANG X B. Numerical investigation on combustion in muzzle flows using an inert gas labeling method[J]. International Journal of Heat & Mass Transfer, 2016, 101:91-103. http://www.sciencedirect.com/science/article/pii/S0017931016304033
    [8]
    ZHUO C F, FENG F, WU X S. Development process of muzzle flows including a gun-launched missile[J]. Chinese Journal of Aeronautics, 2015, 28(2):385-386. doi: 10.1016/j.cja.2015.02.001
    [9]
    COSTA E, LAGASCO F. Development of a 3D numerical methodology for fast prediction of gun blast induced loading[J]. Shock Waves, 2014, 24(3):257-265. doi: 10.1007/s00193-013-0461-8
    [10]
    SANDOVAL P, CORNEJO P, TINAPP F. Evaluating the longitudinal stability of an UAV using a CFD-6DOF model[J]. Aerospace Science & Technology, 2015, 43:463-470. https://www.researchgate.net/publication/275058678_Evaluating_the_longitudinal_stability_of_an_UAV_using_a_CFD-6DOF_model
    [11]
    ZHANG X B, YU W. Aerodynamic analysis of projectile in gun system firing process[J]. Journal of Applied Mechanics, 2010, 77(5):769-775. https://www.researchgate.net/publication/245512943_Aerodynamic_Analysis_of_Projectile_in_Gun_System_Firing_Process
    [12]
    BLAZEK J. Computational fluid dynamics: principles and applications[M]. New York: Elsevier, 2015:81-96.
    [13]
    ANSYS Inc. ANSYS FLUENT: 14. 0 theory guide[Z]. PA, Canonsburg, 2011.
    [14]
    ISSA R I, GOSMAN A D, WATKINS A P. The computation of compressible and incompressible recirculating flows by a non-iterative implicit scheme[J]. Journal of Computational Physics, 1986, 62(1):66-82. doi: 10.1016/0021-9991(86)90100-2
    [15]
    王保国, 离歌, 黄伟光, 等.非定常气体动力学[M].北京:北京理工大学出版社, 2012:122-150.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (5382) PDF downloads(180) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return