Citation: | GONG Xiangfei, LIU Wentao, ZHANG Shudao, YANG Jiming. Numerical simulation of peak pressure in near-field underwater explosion[J]. Explosion And Shock Waves, 2019, 39(4): 041409. doi: 10.11883/bzycj-2017-0262 |
In this work, to obtain the pressure state of underwater explosion in near-field, we numerically simulated the whole process of underwater explosion using the smoothed particle hydrodynamics and adopting the C-J detonation model, and following the empirical formulas, confirmed the laws of the peak pressure, thereby verifying the effectiveness of the numerical program. We also analyzed the waves' propagation in underwater explosion and compared it with the numerical results of underwater explosion in various dimensions. The results show that the distance ratio R/a=6 is a demarcation point in the waves structure, and in the R/a<6 near-field range the fitted peak pressure curve should be divided into two sections. Further, we performed segmented fitting of the numerical results with power function, and found the fitted curve in good agreement with the numerical results.
[1] |
库尔. 水下爆炸[M]. 罗耀杰, 韩润泽, 官信, 等译. 北京: 国防工业出版社, 1960.
|
[2] |
DORSETT H, CLIFF M D. Detonation front curvature measurements and aquarium tests of tritonal variants: ARML, DSTO-TR-1411 [R]. 2003.
|
[3] |
BENTEROU J, BENNETT C V, COLE G, et al. Internal detonation velocity measurements inside high Explosives: LLNL-PROC-409969 [R]. 2009.
|
[4] |
池家春, 马冰. TNT/RDX(40/60)炸药球水中爆炸波研究 [J]. 高压物理学报, 1999, 13(3): 199–204. DOI: 10.11858/gywlxb.1999.03.008.
CHI Jiachun, MA Bing. Underwater explosion wave by a spherical charge of composition B-3 [J]. Chinese Journal of High Pressure Physics, 1999, 13(3): 199–204. DOI: 10.11858/gywlxb.1999.03.008.
|
[5] |
赵继波, 谭多望, 李金河, 等. TNT药柱水中爆炸近场压力轴向衰减规律 [J]. 爆炸与冲击, 2008, 28(6): 539–543. DOI: 10.3321/j.issn:1001-1455.2008.06.010.
ZHAO Jibo, TAN Duowang, LI Jinhe, et al. Axial pressure damping of cylindrical tnt charges in the near underwater-explosion field [J]. Explosion and Shock Waves, 2008, 28(6): 539–543. DOI: 10.3321/j.issn:1001-1455.2008.06.010.
|
[6] |
师华强, 宗智, 贾敬蓓. 水下爆炸冲击波的近场特性 [J]. 爆炸与冲击, 2009, 29(2): 125–130. DOI: 10.3321/j.issn:1001-1455.2008.06.010.
SHI Huaqiang, ZONG Zhi, JIA Jingbei. Short-range characters of underwater blast waves [J]. Explosion and Shock Waves, 2009, 29(2): 125–130. DOI: 10.3321/j.issn:1001-1455.2008.06.010.
|
[7] |
张远平, 李金河, 龚晏青, 等. 水下爆炸近场冲击波压力测试研究 [J]. 仪器仪表学报, 2009, 30(6): 58–61.
ZHANG Yuanping, LI Jinhe, GONG Yanqing, et al. Measuring study on shock wave pressure at near-field during underwater explosion [J]. Chinese Journal of Scientific Instrument, 2009, 30(6): 58–61.
|
[8] |
李晓杰, 李现远, 张程娇, 等. 水下爆炸近场冲击波速度连续测试 [C] // 中国力学大会, 2013.
LI Xiaojie, LI Xianyuan, ZHANG Chengjiao, et al. Continuous velocity measurement of underwater explosion shock wave in the near field [C] // The Chinese Congress of Theoretical and Applied Mechanics(CCTAM2013), 2013.
|
[9] |
LIU G R, LIU M B. Smoothed particle hydrodynamics: a meshfree particle method [M]. translated by HAN Xu, YANG Gang, QIANG Hongfu, et al. Changsha: Hunan University Press, 2005.
|
[10] |
ZHANG Aman, YANG Wenshan, HUANG Chao, et al. Numerical simulation of column charge underwater explosion based on SPH and BEM combination [J]. Computers & Fluids, 2013(7): 169–178. DOI: 10.1016/j.compfluid.2012.10.012.
|
[11] |
BROOKSHAW L. Smooth particle hydrodynamics in cylindrical coordinates [J]. Australian and New Zealand Industrial and Applied Mathematics Journal, 2003, 44(E): C114–C139. DOI: 10.21914/anziamj.v44i0.675.
|
[12] |
李维新. 一维不定常流与冲击波[M]. 北京: 国防工业出版社, 2003.
|
[13] |
李晓杰, 张程娇, 王小红, 等. 水的状态方程对水下爆炸影响的研究 [J]. 工程力学, 2014, 31(8): 46–52. DOI: 10.6052/j.issn.1000-4750.2013.03.0180.
LI Xiaojie, ZHANG Chengjiao, WANG Xiaohong, et al. Numerical study on the effect of equations of state of water on underwater explosions [J]. Engineering Mechanics, 2014, 31(8): 46–52. DOI: 10.6052/j.issn.1000-4750.2013.03.0180.
|
[14] |
ZAMYSHLYAYEV B V, YAKOVLEV Y S. Dynamic loads in underwater explosion[M]. Washington, D. C. AD-757183,1973.
|
[1] | FANG Houlin, LU Qiang, GUO Quanshi, LI Guoliang, LIU Cunxu, TAO Sihao, ZHANG Dezhi. Experimental research on the free surface effect of shock wave and bubble behavior of small yield underwater explosion[J]. Explosion And Shock Waves, 2024, 44(8): 081444. doi: 10.11883/bzycj-2024-0003 |
[2] | XU Qingtao, MA Honghao, ZHOU Zhangtao, YANG Ke, SHEN Zhaowu. Pressure-time formula for underwater explosion based on pressure-impulse curve[J]. Explosion And Shock Waves, 2024, 44(8): 081445. doi: 10.11883/bzycj-2023-0442 |
[3] | CHEN Ziwei, WANG Zhongqi, ZENG Linghui. A method for predicting peak pressure in an explosion shock tube based on BP neural network[J]. Explosion And Shock Waves, 2024, 44(5): 054101. doi: 10.11883/bzycj-2023-0187 |
[4] | DU Chuang, ZHANG Jiangpeng, ZHUANG Tieshuan, WU Jun, XU Wenxuan, ZHANG Tao. Pressure distribution and dynamic response of a submerged tunnel under explosion loading[J]. Explosion And Shock Waves, 2024, 44(5): 053202. doi: 10.11883/bzycj-2023-0255 |
[5] | HUANG Xieping, KONG Xiangzhen, CHEN Zuyu, FANG Qin. Damage effects of underwater explosions on gravity dams and optimal standoff distances[J]. Explosion And Shock Waves, 2023, 43(5): 052202. doi: 10.11883/bzycj-2022-0113 |
[6] | HUANG Chao, ZHANG Pan, ZENG Fan, XU Weizheng, WANG Jie, LIU Na. A method for adjusting and controlling underwater explosion shock wave[J]. Explosion And Shock Waves, 2022, 42(8): 083201. doi: 10.11883/bzycj-2021-0450 |
[7] | WEN Yanbo, HU Liangliang, QIN Jian, ZHANG Yanze, WANG Jinxiang, LIU Liangtao, HUANG Ruiyuan. Experimental study and numerical simulation on bubble pulsation and water jet in near-field underwater explosion[J]. Explosion And Shock Waves, 2022, 42(5): 053203. doi: 10.11883/bzycj-2021-0206 |
[8] | LIU Xin, GU Wenbin, CAI Xinghui, WANG Tao, LIU Jianqing, WANG Zhenxiong, SHEN Huiming. Blast loads on the inner wall of cylindrical explosion containment vessel[J]. Explosion And Shock Waves, 2022, 42(2): 022201. doi: 10.11883/bzycj-2021-0209 |
[9] | YU Qing, ZHANG Hui, YANG Ruizhi. Numerical simulation of the shock wave generated by electro-hydraulic effect based on LS-DYNA[J]. Explosion And Shock Waves, 2022, 42(2): 024201. doi: 10.11883/bzycj-2021-0214 |
[10] | LIU Jinghan, TANG Ting, WEI Zhuobin, LI Lingfeng. Experimental research in damage effects of high-piled wharf under underwater explosion[J]. Explosion And Shock Waves, 2020, 40(11): 111408. doi: 10.11883/bzycj-2019-0467 |
[11] | HE Ming, ZHANG Aman, LIU Yunlong. Interaction of the underwater explosion bubbles and nearby double-layer structures with circular holes[J]. Explosion And Shock Waves, 2020, 40(11): 111402. doi: 10.11883/bzycj-2020-0110 |
[12] | DONG Qi, WEI Zhuobin, TANG Ting, LI Lingfeng, LIU Jinghan. Damage effects of caisson gravity wharf under underwater explosion[J]. Explosion And Shock Waves, 2019, 39(6): 065101. doi: 10.11883/bzycj-2018-0090 |
[13] | LI Xiaojie, YANG Chenchen, YAN Honghao, WANG Xiaohong, WANG Yuxin, ZHANG Chengjiao. Numerical study of near-field underwater explosion of cylindrical aluminized explosive by the method of characteristics[J]. Explosion And Shock Waves, 2019, 39(2): 022301. doi: 10.11883/bzycj-2017-0412 |
[14] | QIANG Hongfu, SUN Xinya, WANG Guang, HUANG Quanzhang. Numerical simulation on steel box damage under internal explosion by smoothed particle hydrodynamics[J]. Explosion And Shock Waves, 2019, 39(5): 052201. doi: 10.11883/bzycj-2017-0439 |
[15] | LI Xiaojie, YANG Chenchen, ZHANG Chengjiao, YAN Honghao, WANG Xiaohong. A finite difference method of three characteristic lines of two-dimensional non-isentropic steady flow of cylindrical explosive underwater explosion[J]. Explosion And Shock Waves, 2018, 38(4): 847-854. doi: 10.11883/bzycj-2016-0314 |
[16] | NiXiao-jun, MaHong-hao, ShenZhao-wu, LiLe. NumericalstudyonimpactpropertiesofAlfoamunderexplosiveloading[J]. Explosion And Shock Waves, 2013, 33(2): 120-125. doi: 10.11883/1001-1455(2013)02-0120-06 |
[17] | MINGFu-ren, ZHANGA-man, YANG Wen-shan. Three-dimensionalsimulationsonexplosiveloadcharacteristicsof underwaterexplosionnearfreesurface[J]. Explosion And Shock Waves, 2012, 32(5): 508-514. doi: 10.11883/1001-1455(2012)05-0508-07 |
[18] | LIXiao-jie, ZHANGCheng-jiao, YAN Hong-hao, WANGXiao-hong, WANGYu-xin. Differencemethodofcharacteristicsinisentropicflow ofunderwaterexplosioninnear-fieldregion[J]. Explosion And Shock Waves, 2012, 32(6): 604-608. doi: 10.11883/1001-1455(2012)06-0604-05 |
[19] | SHI Hua-qiang, ZONG Zhi, JIA Jing-bei. Short-range characters of underwater blast waves[J]. Explosion And Shock Waves, 2009, 29(2): 125-130. doi: 10.11883/1001-1455(2009)02-0125-06 |
[20] | CHEN Yong, TANG Ping, WANG Yu, YANG Shi-quan. Dynamic response analysis of rigid-plastic circular plate under underwater blast loading[J]. Explosion And Shock Waves, 2005, 25(1): 90-96. doi: 10.11883/1001-1455(2005)01-0090-07 |
1. | 刘先辉,王高辉,卢文波. 水下双弹爆炸冲击波传播特性研究. 武汉大学学报(工学版). 2024(01): 28-36 . ![]() | |
2. | 严泽臣,岳松林,邱艳宇,王建平,赵跃堂,施杰,李旭. 水下爆炸冲击波反射压力计算方法的改进. 兵工学报. 2024(04): 1196-1207 . ![]() | |
3. | 宗周红,甘露,院素静,李明鸿,单玉麟,林津,夏梦涛,陈振健. 桥梁结构抗爆安全防护研究综述. 中国公路学报. 2024(05): 1-37 . ![]() | |
4. | 王丕光,卢冉冉,闫秋实,李述涛,杜修力. 水下爆炸作用下基于声学的爆源子结构输入方法. 力学学报. 2023(04): 915-924 . ![]() | |
5. | 任凯,周洪景,杨晨. 船体水下近距非接触爆炸损伤计算之两步迭代法. 爆炸与冲击. 2023(04): 90-101 . ![]() | |
6. | 刘哲函,王晓明,王燕,李健,南德,刘泽玉,曾志. WIGWAM水下核爆炸气泡脉动理论计算及数值模拟对比分析. 现代应用物理. 2023(03): 244-252 . ![]() | |
7. | 尹国福,陈建华,任西,任炜,李蛟,纪向飞. 反蛙人榴弹引战系统集成设计与毁伤规律研究. 火工品. 2022(01): 1-5 . ![]() | |
8. | 杨文,岳彩新,宋家良,吴志超,孙晨. 工业电子雷管抗冲击性能试验研究. 火工品. 2022(02): 16-19 . ![]() | |
9. | 杨文,吴竞,宋家良,夏光,黄孟文,陈以钻. 两种电子雷管抗冲击性能对比试验研究. 爆破器材. 2022(05): 38-42 . ![]() | |
10. | 岳彩新. 两种提高工业电子雷管抗冲击波性能缓冲材料的实验研究. 煤矿爆破. 2021(03): 1-5 . ![]() | |
11. | 林尚剑,王金相,马腾,秦健,李恒,黄瑞源,刘亮涛. 水下多点爆炸冲击波叠加效应研究. 兵工学报. 2020(S1): 39-45 . ![]() | |
12. | 邱清水,陈莹玉,古滨,李炳南,姚熊亮,王志凯. 水下近场爆炸载荷数值预报研究. 四川轻化工大学学报(自然科学版). 2020(05): 44-50 . ![]() |