Volume 39 Issue 4
Mar.  2019
Turn off MathJax
Article Contents
HUANG Zhigang, SUN Tiezhi, YANG Biye, ZHANG Guiyong, ZONG Zhi. Numerical analysis on structural strength of a cone-shaped flatted revolution body during high-speed water-entry[J]. Explosion And Shock Waves, 2019, 39(4): 043201. doi: 10.11883/bzycj-2017-0330
Citation: HUANG Zhigang, SUN Tiezhi, YANG Biye, ZHANG Guiyong, ZONG Zhi. Numerical analysis on structural strength of a cone-shaped flatted revolution body during high-speed water-entry[J]. Explosion And Shock Waves, 2019, 39(4): 043201. doi: 10.11883/bzycj-2017-0330

Numerical analysis on structural strength of a cone-shaped flatted revolution body during high-speed water-entry

doi: 10.11883/bzycj-2017-0330
  • Received Date: 2017-09-08
  • Rev Recd Date: 2018-01-10
  • Available Online: 2019-03-25
  • Publish Date: 2019-04-01
  • In order to investigate the structural strength of a cone-shaped flatted revolution body during high-speed water-entry, based on the nonlinear finite element software LS-DYNA, which adopts the arbitrary Lagrangian-Eulerian (ALE) algorithm, the paper analyzes the characteristics of impact force and strength for the different structural revolution bodies with the initial velocity of 100 m/s. The results show that the peak impact pressure intensity and the velocity attenuation of the revolution body during water-entry agree well with the theoretical values, which can effectively verify the validity of the present numerical method. Besides, the peak value of the impact load occurs at the initial stage of the water-entry and the period is very short. After the revolution body enters the surface of the water, the impact load becomes smaller rapidly and changes slightly. The structural style of the revolution body has great effect on its strength during the water-entry, especially the head thickness of the revolution body. When the head thickness of the revolution body is 8 mm and the wall thickness of its afterbody is larger than 2.5 mm, the structure has no damage during the water-entry.
  • loading
  • [1]
    王永虎, 石秀华. 入水冲击问题研究的现状与进展 [J]. 爆炸与冲击, 2008, 28(3): 276–282. DOI: 10.11883/1001-1455(2008)03-0276-07

    WANG Yonghu, SHI Xiuhua. Review on research and development of water-entry impact problem [J]. Explosion and Shock Waves, 2008, 28(3): 276–282. DOI: 10.11883/1001-1455(2008)03-0276-07
    [2]
    WORTHINGTON A M, COLE R S. Impact with a liquid surface studied by the aid of instantaneous photography: paper II [J]. Philosophical Transactions of the Royal Society of London, 1900, 194: 175–199. DOI: 10.1098/rsta.1897.0005.
    [3]
    VON KARMAN T. The impact on seaplane floats during landing: 20140804-120956389 [R]. 1929.
    [4]
    WAGNER V H. Phenomena associated with impacts and sliding on liquid surfaces [J]. ZAMM: Journal of Applied Mathematics and Mechanics, 1932, 12(4): 193–215. doi: 10.1002/(ISSN)1521-4001
    [5]
    MAYO W L. Hydrodynamic impact of a system with a single elastic mode: I: theory and generalized solution with an application to an elastic airframe: NACA-report-1074 [R]. Technical Report Archive & Image Library, 1952.
    [6]
    MAY A. Review of water-entry theory and data [J]. Journal of Hydronautics, 1970, 4(4): 140–142. DOI: 10.2514/3.62851.
    [7]
    ANGHILERI M, SPIZZICA A. Experimental validation of finite element models for water impacts [C] // Proceedings of the Second International Crash Users Seminar. Cranfield, UK, 1995.
    [8]
    FALTINSEN O M, ZHAO R. Water entry of ship sections and axisymmetric bodies: AGARD report, 827 [R]. Neuilly-sur-Seine, WaterKiev, Ukraine: Advisory Group for Aerospace Research and Development, 1997: 24−1−24−11.
    [9]
    KOROBKIN A A, WU G X. Impact on a floating circular cylinder [J]. Proceedings: Mathematical, Physical and Engineering Sciences, 2000, 456(2002): 2489–2514. DOI: 10.1098/rspa.2000.0622.
    [10]
    DONGUY B, PESEUX B, GORNET L, et al. Three-dimensional hydro-elastic water entry: preliminary results [C] // The Eleventh International Offshore and Polar Engineering Conference. Stavanger, Norway: International Society of Offshore and Polar Engineers, 2001: 324−330.
    [11]
    郑金伟, 宗智. 三维刚体椭圆头结构高速倾斜入水冲击模拟 [J]. 船海工程, 2012, 41(3): 7–9 doi: 10.3963/j.issn.1671-7953.2012.03.003

    ZHENG Jinwei, ZONG Zhi. 3-dimensional numerical simulation of rigid elliptic structure inclined water-entry at high speed [J]. Ship and Ocean Engineering, 2012, 41(3): 7–9 doi: 10.3963/j.issn.1671-7953.2012.03.003
    [12]
    施红辉, 高见卓也, 伊藤基之. 钝体入水时的水下声场的测量 [J]. 流体力学实验与测量, 2001, 15(2): 78–84 doi: 10.3969/j.issn.1672-9897.2001.02.011

    SHI Honghui, TAKAMI Takuya, ITOH Motoyuki. Measurement of the underwater acoustic field in water entry of blunt body [J]. Experiments and Measurements in Fluid Mechanics, 2001, 15(2): 78–84 doi: 10.3969/j.issn.1672-9897.2001.02.011
    [13]
    SHI Honghui, KUME Makoto. Underwater acoustics and cavitating flow of water entry [J]. Acta Mechanica Sinica, 2004, 20(4): 374–382. DOI: 10.1007/bf02489375.
    [14]
    王云, 袁绪龙, 吕策. 弹体高速入水弯曲弹道实验研究 [J]. 兵工学报, 2014, 35(12): 1998–2002 doi: 10.3969/j.issn.1000-1093.2014.12.010

    WANG Yun, YUAN Xulong, LYU Ce. Experimental research on curved trajectory of high-speed water-entry missile [J]. Acta Armamentarii, 2014, 35(12): 1998–2002 doi: 10.3969/j.issn.1000-1093.2014.12.010
    [15]
    潘光, 杨悝. 空投鱼雷入水载荷 [J]. 爆炸与冲击, 2014, 34(5): 521–526. DOI: 10.11883/1001-1455(2014)05-0521-06

    PAN Guang, YANG Kui. Impact force encountered by water-entry airborne torpedo [J]. Explosion and Shock Waves, 2014, 34(5): 521–526. DOI: 10.11883/1001-1455(2014)05-0521-06
    [16]
    黄凯, 乐述文. 不同头型弹体模型入水现象的实验研究 [J]. 物理实验, 2016, 36(5): 13–18 doi: 10.3969/j.issn.1005-4642.2016.05.003

    HUANG Kai, YUE Shuwen. Experimental research on the behavior of water-entry of different head shape projectile models [J]. Physics Experimentation, 2016, 36(5): 13–18 doi: 10.3969/j.issn.1005-4642.2016.05.003
    [17]
    李佳川, 魏英杰, 王聪, 等. 不同扰动角速度高速射弹入水弹道特性 [J]. 哈尔滨工业大学学报, 2017, 49(4): 131–136

    LI Jiachuan, WEI Yingjie, WANG Cong, et al. Water entry trajectory characteristics of high-speed projectile with various turbulent angular velocity [J]. Journal of Harbin Institute of Technology, 2017, 49(4): 131–136
    [18]
    张伟, 郭子涛, 肖新科, 等. 弹体高速入水特性实验研究 [J]. 爆炸与冲击, 2011, 31(6): 579–584. DOI: 10.11883/1001-1455(2011)06-0579-06

    ZHANG Wei, GUO Zitao, XIAO Xinke, et al. Experimental investigations on behaviors of projectile high-speed water entry [J]. Explosion and Shock Waves, 2011, 31(6): 579–584. DOI: 10.11883/1001-1455(2011)06-0579-06
    [19]
    郭子涛, 张伟, 郭钊, 等. 截卵形弹水平入水的速度衰减及空泡扩展特性 [J]. 爆炸与冲击, 2017, 37(4): 727–733. DOI: 10.11883/1001-1455(2017)04-0727-07

    GUO Zitao, ZHANG Wei, GUO Zhao, et al. Characteristics of velocity attenuation and cavity expansion induced by horizontal water-entry of truncated-ogive nosed projectiles [J]. Explosion and Shock Waves, 2017, 37(4): 727–733. DOI: 10.11883/1001-1455(2017)04-0727-07
    [20]
    马庆鹏, 何春涛, 王聪, 等. 球体垂直入水空泡实验研究 [J]. 爆炸与冲击, 2014, 34(2): 174–180. DOI: 10.11883/1001-1455(2014)02-0174-07

    MA Qingpeng, HE Chuntao, WANG Cong, et al. Experimental investigation on vertical water-entry of sphere [J]. Explosion and Shock Waves, 2014, 34(2): 174–180. DOI: 10.11883/1001-1455(2014)02-0174-07
    [21]
    王珂, 王自力, 王志东, 等. 弹性回转体入水砰击载荷预报 [J]. 船海工程, 2011, 40(5): 20–22 doi: 10.3963/j.issn.1671-7953.2011.05.006

    WANG Ke, WANG Zili, WANG Zhidong, et al. Prediction of the slamming pressure on a 3-D elastic axisymmetric structure [J]. Ship and Ocean Engineering, 2011, 40(5): 20–22 doi: 10.3963/j.issn.1671-7953.2011.05.006
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article Metrics

    Article views (4594) PDF downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return