Citation: | HE Nianfeng, REN Guowu, CHEN Yongtao, GUO Zhaoliang. Numerical simulation on spallation and fragmentation of tin under explosive loading[J]. Explosion And Shock Waves, 2019, 39(4): 042101. doi: 10.11883/bzycj-2017-0354 |
[1] |
ANDRIOT P, CHAPRON P, LAMBERT V, et al. Influence of melting on shocked free surface behaviour using Doppler laser interferometry and X-ray densitometry [C] // AIP Conference Proceedings: Shock Waves in Condensed Matter, 1983: 277−280. DOI: 10.1016/b978-0-444-86904-3.50065-8.
|
[2] |
ZHIEMBETOV A K, MIKHAYLOV A L, SMIRNOV G S. Experimental study of explosive fragmentation of metals melts [C] // AIP Conference Proceedings: Shock Compression of Condensed Matter, 2001: 547−552. DOI: 10.1063/1.1483598.
|
[3] |
HOLTKAMP D B, CLARK D A, FERME N, et al. A survey of high explosive-induced damage and spall in selected metals using proton radiography [C] // AIP Conference Proceedings: Shock Compression of Condensed Matter, 2004: 477−482. DOI: 10.1063/1.1780281.
|
[4] |
ANTOUN T, SEAMAN L, CURRAN D R, et al. Spall fracture [M]. New York: Springer, 2002: 1−34.
|
[5] |
HOPKINSON B. A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets [J]. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1914, 213: 437–456. DOI: 10.1098/rsta.1914.0010.
|
[6] |
SIGNOR L, RESSEGUIER T D, ROY G, et al. Fragment-size prediction during dynamic fragmentation of shock-melted tin: recovery experiments and modeling issues [C] // AIP Conference Proceedings: Shock Compression of Condensed Matter, 2007: 593−596. DOI: 10.1063/1.2833159.
|
[7] |
RESSEGUIER T D, SIGNOR L, DRAGON A, et al. Dynamic fragmentation of laser shock-melted tin: experiment and modelling [J]. International Journal of Fracture, 2010, 163(1/2): 109–119.
|
[8] |
陈永涛, 任国武, 汤铁钢, 等. 爆轰加载下金属样品的熔化破碎现象诊断 [J]. 物理学报, 2013, 62(11): 116202 doi: 10.7498/aps.62.116202
CHEN Yongtao, HONG Renwu, TANG Tiegang, et al. Experimental diagnostic of melting fragments under explosive loading [J]. Acta Physica Sinica, 2013, 62(11): 116202 doi: 10.7498/aps.62.116202
|
[9] |
陈永涛, 洪仁楷, 陈浩玉, 等. 爆轰加载下金属材料的微层裂现象 [J]. 爆炸与冲击, 2017, 37(1): 61–67. DOI: 10.11883/1001-1455(2017)01-0061-07
CHEN Yongtao, HONG Renkai, CHEN Haoyu, et al. Micro-spalling of metal under explosive loading [J]. Explosion and Shock Waves, 2017, 37(1): 61–67. DOI: 10.11883/1001-1455(2017)01-0061-07
|
[10] |
CHEN Y, HONG R, CHEN H, et al. An improved Asay window technique for investigating the micro-spall of an explosively-driven tin [J]. Review of Scientific Instruments, 2017, 88(1): 013904. doi: 10.1063/1.4973699
|
[11] |
张林, 李英华, 张祖根, 等. 用于诊断材料微层裂的Asay窗技术 [J]. 爆炸与冲击, 2017, 37(4): 692–698. DOI: 10.11883/1001-1455(2017)04-0692-07
ZHANG Lin, LI Yinghua, ZHANG Zugen, et al. Asay window for probing the microspall of materials [J]. Explosion and Shock Waves, 2017, 37(4): 692–698. DOI: 10.11883/1001-1455(2017)04-0692-07
|
[12] |
SOULARD L. Molecular dynamics study of the micro-spallation [J]. The European Physical Journal D, 2008, 50(3): 241–251. DOI: 10.1140/epjd/e2008-00212-2.
|
[13] |
XIANG M, HU H, CHEN J, et al. Molecular dynamics simulations of micro-spallation of single crystal lead [J]. Modelling and Simulation in Materials Science and Engineering, 2013, 21(5): 055005. doi: 10.1088/0965-0393/21/5/055005
|
[14] |
XIANG M, HU H, CHEN J. Spalling and melting in nanocrystalline Pb under shock loading: molecular dynamics studies [J]. Journal of Applied Physics, 2013, 113(14): 144312. doi: 10.1063/1.4799388
|
[15] |
曹结东, 刘文韬, 张树道. 爆轰驱动锡微层裂的数值模拟研究 [C] // 第十四届全国激波与激波管学术会, 2010: 153−157.
|
[16] |
张锁春. 光滑质点流体动力学(SPH)方法: 综述 [J]. 计算物理, 1996, 13(4): 385–397
ZHANG Suochun. Smoothedparticle hydrodynamics (SPH) method: a review [J]. Chinese Journal of Computation Physics, 1996, 13(4): 385–397
|
[17] |
刘谋斌, 宗智, 常建忠. 光滑粒子动力学方法的发展与应用 [J]. 力学进展, 2011, 41(2): 217–234
LIU Moubin, ZONG zhi, CHANG Jianzhong. Developements and applications of smoothed particle hydrodynamics [J]. Advances in Mechanics, 2011, 41(2): 217–234
|
[18] |
STEINBERG D J, COCHRAN S G, Guinan M W. A constitutive model for metals applicable at high-strain rate [J]. Journal of Applied Physics, 1980, 51(3): 1498–1504. doi: 10.1063/1.327799
|
[19] |
GRADY D E. The spall strength of condensed matter [J]. Journal of the Mechanics and Physics of Solids, 1988, 36(3): 353–384. doi: 10.1016/0022-5096(88)90015-4
|