Volume 39 Issue 5
May  2019
Turn off MathJax
Article Contents
WANG Chun, CHENG Luping, TANG Lizhong, WANG Wen, LIU Tao, WEI Yongheng. Energy evolution law of copper-bearing serpentine received frequent impact under common action of high axial compression and confining pressure[J]. Explosion And Shock Waves, 2019, 39(5): 053101. doi: 10.11883/bzycj-2018-0076
Citation: WANG Chun, CHENG Luping, TANG Lizhong, WANG Wen, LIU Tao, WEI Yongheng. Energy evolution law of copper-bearing serpentine received frequent impact under common action of high axial compression and confining pressure[J]. Explosion And Shock Waves, 2019, 39(5): 053101. doi: 10.11883/bzycj-2018-0076

Energy evolution law of copper-bearing serpentine received frequent impact under common action of high axial compression and confining pressure

doi: 10.11883/bzycj-2018-0076
  • Received Date: 2018-03-13
  • Rev Recd Date: 2018-08-20
  • Available Online: 2019-04-25
  • Publish Date: 2019-05-01
  • Under the common action of high axial stress and confining pressure, the main types of energy were discussed in the study of frequent dynamic disturbance firstly. At the same time, the formula for calculating elastic energy, plastic energy are deduced before and after the impact disturbance. In order to conduct dynamic test, the horizontal stress, the vertical stress, the influence of blasting excavation disturbance of the deep rock mass were simulated by pre-confining pressure, pre-high axial stress, 0.5 MPa impact pressure, respectively. Based on the experimental results, the dynamic characteristics and energy evolution of the copper serpentine were analyzed. The results show that the cumulative disturbance impact times of copper snake-like rock decrease with the increase of axial pressure, while they increase with the increasing confining pressure, and the dynamic peak stress decreases with the increasing number of disturbances. As the number of disturbances increases, the elastic energy in the rock sample increases first and then decreases, the plastic energy shows a trend of increase, and the ratio of the reflection energy to the incident energy increases while the ratio of the transmission energy to incident energy decreases. The unit volume absorption (release) energy shows the trend of the lower convex curve with the number of disturbances increases. In addition, the averages of unit volume absorption (release) energy decreases first and then increases with the increasing confining pressure, but decreases with the increase of axial pressure.
  • loading
  • [1]
    尤业超, 李二兵, 谭跃虎, 等. 基于能量耗散原理的盐岩动力特性及破坏特征分析 [J]. 岩石力学与工程学报, 2017, 36(4): 843–851. DOI: 10.13722/j.cnki.jrme.2016.0503.

    YOU Yechao, LI Erbing, TAN Yuehu, et al. Analysis on dynamic properties and failure characteristics of salt rock based on energy dissipation principle [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(4): 843–851. DOI: 10.13722/j.cnki.jrme.2016.0503.
    [2]
    张忠虎, 谢和平. 岩石变形破坏过程中的能量传递和耗散研究 [J]. 四川大学学报(工程科学版), 2008, 40(2): 26–31. DOI: 10.15961/j.jsuese.2008.018.

    ZHANG Zhonghu, XIE Heping. Energy transfer and energy dissipation in rock deformation and fracture [J]. Journal of Sichuan University (Engineering Science), 2008, 40(2): 26–31. DOI: 10.15961/j.jsuese.2008.018.
    [3]
    Liu X H, Dai F, Zhang R, et al. Static and dynamic uniaxial compression tests on coal rock considering the bedding directivity [J]. Environmental Earth Sciences, 2015, 73(10): 5933–5949. DOI: 10.1007/s12665-015-4106-3.
    [4]
    李明, 茅献彪. 冲击载荷作用下砂岩破坏及能量耗变率效应的数值模拟研究 [J]. 爆破, 2014, 31(2): 78–83. DOI: 10.3963/j.issn.1001-487X.2014.02.017.

    LI Ming, MAO Xianbiao. Numerical simulation studies on strain rate effect of sandstone's energy dissipation and destruction under impulse loading [J]. Blasting, 2014, 31(2): 78–83. DOI: 10.3963/j.issn.1001-487X.2014.02.017.
    [5]
    于水生, 卢玉斌, 朱万成, 等. SHPB 试验中花岗岩破坏程度与能量耗散关系分析 [J]. 东北大学学报(自然科学版), 2015, 36(12): 1733–1737. DOI: 10.3969/j.issn.1005-3026.2015.12.014.

    YU Shuisheng, LU Yubin, ZHU Wancheng, et al. Analysis on relationship between degree of damage and energy dissipation of granite in SHPB tests [J]. Journal of Northeastern University (Natural Science), 2015, 36(12): 1733–1737. DOI: 10.3969/j.issn.1005-3026.2015.12.014.
    [6]
    JU Yang, WANG Huijie, YANG Yongming, et al. Numerical simulation of mechanisms of deformation, failure and energy dissipation in porous rock media subjected to wave stresses [J]. Science China: Technological Sciences, 2010, 53(4): 1098–1113. DOI: 10.1007/s11431-010-0126-0.
    [7]
    黎立云, 徐志强, 谢和平, 等. 不同冲击速度下岩石破坏能量规律的实验研究 [J]. 煤炭学报, 2011, 36(12): 2007–2011. DOI: 10.13225/j.cnki.jccs.2011.12.012.

    LI Liyun, XU Zhiqiang, XIE Heping, et al. Failure experimental study on energy laws of rock under differential dynamic impact velocities [J]. Journal of China Coal Society, 2011, 36(12): 2007–2011. DOI: 10.13225/j.cnki.jccs.2011.12.012.
    [8]
    叶洲元, 李夕兵, 万国香, 等. 受三维静载压缩岩石对冲击能的吸收效应 [J]. 爆炸与冲击, 2009, 29(4): 419–424. DOI: 10.11883/1001-1455(2009)04-0419-06.

    YE Zhouyuan, LI Xibing, WAN Guoxiang, et al. Impact energy-absorption property of rock under tri-axial compression [J]. Explosion and Shock Waves, 2009, 29(4): 419–424. DOI: 10.11883/1001-1455(2009)04-0419-06.
    [9]
    许金余, 刘石. SHPB试验中高温下岩石变形破坏过程的能耗规律分析 [J]. 岩石力学与工程学报, 2013, 32(s2): 3109–3115.

    XU Jin-yu, LIU Shi. Analysis of energy dissipation rule during deformation and fracture process of rock under high temperatures in SHPB test [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(s2): 3109–3115.
    [10]
    徐小丽, 高峰, 周清, 等. 高温后岩石变形破坏过程的能量分析 [J]. 武汉理工大学学报, 2011, 33(1): 104–107. DOI: 10.3963/j.issn.1671-4431.2011.01.023.

    XU Xiaoli, GAO Feng, ZHOU Qing, et al. Energy analysis of rock deformation and failure process after high temperature [J]. Journal of Wuhan University of Technology, 2011, 33(1): 104–107. DOI: 10.3963/j.issn.1671-4431.2011.01.023.
    [11]
    尹土兵, 李夕兵, 叶洲元, 等. 温–压耦合及动力扰动下岩石破碎的能量耗散 [J]. 岩石力学与工程学报, 2013, 32(6): 1197–1202. doi: 10.3969/j.issn.1000-6915.2013.06.013

    YIN Tubing, LI Xibing, YE Zhouyuan, et al. Energy dissipation of rock fracture under thermo-mechanical coupling and dynamic disturbances s [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(6): 1197–1202. doi: 10.3969/j.issn.1000-6915.2013.06.013
    [12]
    李夕兵, 左宇军, 马春德. 动静组合加载下岩石破坏的应变能密度准则及突变理论分析 [J]. 岩石力学与工程学报, 2005, 24(16): 2814–2824. DOI: 10.3321/j.issn:1000-6915.2005.16.002.

    LI Xibing, ZUO Yujun, MA Chunde. Failure criterion of strain energy density and catastrophe theory analysis of rock subjected to static-dynamic coupling loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2814–2824. DOI: 10.3321/j.issn:1000-6915.2005.16.002.
    [13]
    金解放, 李夕兵, 殷志强, 等. 轴压和围压对循环冲击下砂岩能量耗散的影响 [J]. 岩土力学, 2013, 34(11): 3096–3102. DOI: 10.16285/j.rsm.2013.11.007.

    JIN Jiefang, LI Xibing, YIN Zhiqiang, et al. Effects of axial compression and confining pressure on energy dissipation of sandstone under cyclic impact loads [J]. Rock and Soil Mechanics, 2013, 34(11): 3096–3102. DOI: 10.16285/j.rsm.2013.11.007.
    [14]
    赵伏军, 王宏宇, 彭云, 等. 动静组合载荷破岩声发射能量与破岩效果试验研究 [J]. 岩石力学与工程学报, 2012, 31(7): 1363–1368. DOI: 10.3969/j.issn.1000-6915.2012.07.008.

    ZHAO Fujun, WANG Hongyu, PENG Yun, et al. Experimental research on acoustic emission energy and rock crushing effect under static-dynamic coupling loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(7): 1363–1368. DOI: 10.3969/j.issn.1000-6915.2012.07.008.
    [15]
    刘少虹, 毛德兵, 齐庆新, 等. 动静加载下组合煤岩的应力波传播机制与能量耗散 [J]. 煤炭学报, 2014, 39(S1): 15–11. DOI: 10.13225/j.cnki.jccs.2013.0411.

    LIU Shaohong, MAO Debing, QI Qingxin, et al. Under static loading stress wave propagation mechanism and energy dissipation in compound coal-rock [J]. Journal of China Coal Society, 2014, 39(S1): 15–11. DOI: 10.13225/j.cnki.jccs.2013.0411.
    [16]
    王文, 李化敏, 顾合龙, 等. 动静组合加载含水煤样能量耗散特征分析 [J]. 岩石力学与工程学报, 2015, 34(S2): 3965–3971. DOI: 10.13722/j.cnki.jrme.2015.0546.

    WANG Wen, LI Huamin, GU Helong, et al. Feature analysis of energy dissipation of water-saturated coal samples under coupled static-dynamic loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2): 3965–3971. DOI: 10.13722/j.cnki.jrme.2015.0546.
    [17]
    LI X, ZHOU Z, ZHAO Y. Approach to minish scattering of results for split Hopkinson pressure bar test [J]. Journal of Central South University of Technology, 2007, 14(3): 404–407. DOI: 10.1007/s11771-007-0079-z.
    [18]
    李夕兵, 周子龙, 王卫华. 运用有限元和神经网络为SHPB装置构造理想冲头 [J]. 岩石力学与工程学报, 2005, 24(23): 4215–4218. DOI: 10.3321/j.issn:1000-6915.2005.23.003.

    LI Xibing, ZHOU Zilong, WANG Weihua. Construction of ideal striker for SHPB device based on FEM and neural network [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(23): 4215–4218. DOI: 10.3321/j.issn:1000-6915.2005.23.003.
    [19]
    Li X B, Zhou Z L, Lok T S, et al. Innovative testing technique of rock subjected to coupled static and dynamic loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(5): 739–748. DOI: 10.1016/j.ijrmms.2007.08.013.
    [20]
    宫凤强, 李夕兵, 刘希灵. 三维动静组合加载下岩石力学特性试验初探 [J]. 岩石力学与工程学报, 2011, 30(6): 1178–1190.

    GONG Fengqiang, LI Xibing, LIU Xiling. Preliminary experimental study of characteristics of rock subjected to 3D coupled static and dynamic loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(6): 1178–1190.
    [21]
    李夕兵, 古德生. 岩石冲击动力学 [M]. 长沙: 中南工业大学出版社, 1994: 16−20.
    [22]
    武建力. 冬瓜山铜矿频繁爆破开采围岩变形与破坏机理研究 [D]. 长沙: 中南大学, 2014: 31−42.
    [23]
    单仁亮. 岩石冲击破坏力学模型及其随机性研究 [D]. 北京: 中国矿业大学, 1997: 67−78.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article views (4408) PDF downloads(73) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return