Citation: | QIN Jincheng, PEI Hongbo, HUANG Wenbin, ZHANG Xu, ZHENG Xianxu, ZHAO Feng. Measuring the detonation reaction zone structure ofJOB-9003 explosive using PDV[J]. Explosion And Shock Waves, 2019, 39(4): 041404. doi: 10.11883/bzycj-2018-0101 |
In order to obtain the chemical reaction zone of HMX based JOB-9003 explosive, experimental measurements on the detonation wave profile of solid explosives using photon Doppler velocimetry (PDV) have been performed. Planar detonations were produced by impacting the explosive with sapphire flyer launched from a powder gun. Particle velocity wave profiles were measured at the explosive/window interface. LiF windows with very thin vapor deposited aluminum mirrors were used in the experiments. The time resolution of PDV is about 1 ns, and the velocity uncertainty is less than 2%. The measurements show distinct end to the reaction zone indicating a CJ point in JOB-9003. The results show that the reaction time of JOB-9003 is (11±2) ns, and the corresponding reaction length is (0.075±0.014) mm. The CJ pressure is (35.6±0.9) GPa, and the pressure at Von-Neumann spike is (47.9±1.2) GPa.
[1] |
DUFF R E, HOUSTON E. Measurement of the Chapman-Jouguet pressure and reaction zone length in a detonating high explosive [J]. Journal of Chemical Physics, 1955, 23(7): 1268–1273. DOI: 10.1063/1.1742255.
|
[2] |
张宝坪, 张庆明, 黄风雷. 爆轰物理学 [M]. 北京: 兵器工业出版社, 2001: 151−153.
|
[3] |
TASKER D G, LEE R J. The measurement of electrical conductivity in the detonating condensed explosives [C] // Proceedings of the 9th International Detonation Symposium. USA: Office of Naval Research, 1989: 123−126.
|
[4] |
LEE R J, GUSTAVSON P K. Electrical conductivity as a real time probe of secondary combustion of solid-fuel additives in detonating explosives [C] // Shock Compression of Condensed Matter 2003. USA: American Institute of Physics, 2004: 1273−1276.
|
[5] |
赵同虎, 张新彦, 李斌, 等. 用光电法研究钝感炸药JB-9014反应区结构 [J]. 高压物理学报, 2002, 16(2): 111–119. DOI: 10.11858/gywlxb.2002.02.005
ZHAO Tonghu, ZHANG Xinyan, LI Bin, et al. Detonation reaction zone structure of JB-9014 [J]. Chinese Journal of High Pressure Physics, 2002, 16(2): 111–119. DOI: 10.11858/gywlxb.2002.02.005
|
[6] |
LOBOIKO B L, LUBYATINSKY S N. Reaction zones of detonating solid explosives [J]. Combustion, Explosion, and Shock Waves, 2000, 36(6): 716–733.
|
[7] |
SHEFFIELD S A, BLOOMQUIST D D, TARVER C M. Subnanosecond measurements of detonation fronts in solid high explosives [J]. Journal of Chemical Physics, 1984, 80(8): 3831–3844. DOI: 10.1063/1.447164.
|
[8] |
SEITZ W L, STACY H L, ENGELKE R, et al. Detonation reaction-zone structure of PBX-9502 [C] // Proceedings of the 9th International Detonation Symposium. USA: Office of Naval Research, 1989: 675−682.
|
[9] |
GUSTAVSEN R L, SHEFFIELD S A, ALCON R R. Detonation wave profiles in HMX based explosives [J]. Office of Scientific & Technical Information Technical Reports, 1998, 429(429): 739–742. DOI: 10.1063/1.55674.
|
[10] |
GUSTAVSEN R L, SHEFFIELD S A, ALCON R R. Progress in measuring detonation wave profiles in PBX9501 [C] // 11th International Detonation Symposium. USA: Office of Naval Research, 1998: 821−827.
|
[11] |
GUSTAVSEN R L, BARTRAM B D, SANCHEZ N. Detonation wave profiles measured in plastic bonded explosives using 1550 nm photon Doppler velocimetry (PDV)[C] // Shock Compression of Condensed Matter 2009. USA: American Institute of Physics, 2009: 253−256.
|
[12] |
BOUYER V, DOUCET M, DECARIS L. Experimental measurements of the detonation wave profile in a TATB based explosive [C] // EPJ Web of Conference. France: EDP Science, 2010: 378−384. DOI: http://dx.doi.org/10.1051/epjconf/20101000030
|
[13] |
BOUYER V, HEBERT P, DOUCET M, et al. Experimental measurements of the chemical reaction zone of TATB and HMX based explosives [C] // Shock Compression of Condensed Matter 2011. USA: American Institute of Physics, 2012: 209−212. DOI: 10.1063/1.3686256
|
[14] |
BOUYER V, SHEFFIELD S A, DATTELBAUM D M, et al. Experimental measurements of the chemical reaction zone of detonating liquid explosives [C] // Shock Compression of Condensed Matter 2009. USA: American Institute of Physics, 2009: 177−180. DOI: 10.1063/1.3295096.
|
[15] |
董海山, 周芬芬. 高能炸药及相关物性能[M]. 北京: 科学出版社, 1989: 126; 130; 301.
|
[16] |
裴红波, 黄文斌, 覃锦程, 等. 基于多普勒测速技术的JB-9014炸药反应区结构研究 [J]. 爆炸与冲击, 2018, 38(3): 485–490. DOI: 10.11883/bzycj-2017-0379
PEI Hongbo, HUANG Wenbin, QIN Jincheng, et al. Reaction zone structure of JB-9014 explosive measured by PDV [J]. Explosion and Shock Waves, 2018, 38(3): 485–490. DOI: 10.11883/bzycj-2017-0379
|
[17] |
STRAND O T, GOOSMAN D R, MARTINEZ C, et al. Compact system for high-speed velocimetry using heterodyne techniques [J]. Review of Scientific Instruments, 2006, 77(8): 083108. DOI: 10.1063/1.2336749.
|
[18] |
项红亮, 王建, 毕重连, 等. 光子多普勒速度测量系统的数据处理方法 [J]. 光学与光电技术, 2012, 10(2): 52–56
XIANG Hongliang, WANG Jian, BI Chonglian, et al. Data processing of photonic Doppler velocimetry system [J]. Optics & Optoelectronic Technology, 2012, 10(2): 52–56
|
[19] |
LIU S, WANG D, LI T, et al. Analysis of photonic Doppler velocimetry data based on the continuous wavelet transform [J]. Review of Scientific Instruments, 2011, 82(2): 593–599. DOI: 10.1063/1.3534011.
|
[20] |
赵万广, 周显明, 李加波, 等. LiF单晶的高压折射率及窗口速度的修正 [J]. 高压物理学报, 2014, 28(5): 571–576. DOI: 10.11858/gywlxb.2014.05.010
ZHAO Wanguang, ZHOU Xianming, LI Jiabo, et al. Refractive index of LiF single crystal at high pressure and its window correction [J]. Chinese Journal of High Pressure Physics, 2014, 28(5): 571–576. DOI: 10.11858/gywlxb.2014.05.010
|
[21] |
JENSEN B J, HOLTKAMP D B, RIGG P A, et al. Accuracy limits and window corrections for photon doppler velocimetry [J]. Journal of Applied Physics, 2007, 101(1): 523–454. DOI: 10.1063/1.2407290.
|
[22] |
FRITZ J N, HIXSON R S, SHAW M S, et al. Overdriven-detonation and sound-speed measurements in PBX-9501 and the " thermodynamic”Chapman-Jouguet pressure [J]. Journal of Applied Physics, 1996, 80(11): 6129–6141. DOI: 10.1063/1.363681.
|
[23] |
MADER C L. Numerical modeling of detonation [M]. Berkely, California: University of California Press, 1979: 69−70.
|
[24] |
MENIKOFF R. Detonation waves in PBX 9501 [J]. Combustion Theory & Modelling, 2006, 10(6): 1003–1021. DOI: 10.1080/13647830600851754.
|
[25] |
TARVER C M. Detonation reaction zones in condensed explosives [C] // APS Topical Conference on Sccm. American Institute of Physics, 2006: 1026-1029. DOI: 10.1063/1.2263497
|
[26] |
SHEFFIELD S A, GUSTAVSEN R L, ALCON R R, et al. High pressure Hugoniot and reaction rate measurements in PBX9501 [C] // AIP Conference Proceedings, 2004, 706(1): 1033-1036. DOI: 10.1063/1.1780414
|
[27] |
DICK J J, MARTINEZ A R, HIXSON R S. Plane impact response of PBX 9501 and its components below 2 GPa: LA-13426-MS [R]. USA: Los Alamos National Laboratory Report, 1998.
|
[28] |
Marsh S P. LASL Shock Hugoniot Data [M]. Berkely: University of California press, 1980: 83.
|
[29] |
BAER M R, ROOT S, DATTELBAUM D, et al. Shockless compression studies of HMX-based explosives [C] // American Institute of Physics Conference Series. American Institute of Physics, 2009: 699−702. DOI: 10.1063/1.3295235
|
[30] |
GIBBS T R. LLNL handbook of high explosives [M]. Berkely: University of California press, 1980: 259−262.
|
[31] |
池家春. 非均匀炸药未反应冲击雨贡纽关系的压力对比测量技术 [C] // 第二次全国爆轰学术会议论文集(3). 南京, 1983: 134−140.
|