Volume 39 Issue 11
Nov.  2019
Turn off MathJax
Article Contents
ZHAO Qi, CHEN Xianfeng, DAI Huaming, YIN Shuhui, WANG Xiaotong, ZHANG Hongming, HUANG Chuyuan. Inhibition of explosion characteristic of premixed gases by filling patterns of rare earth metal materials[J]. Explosion And Shock Waves, 2019, 39(11): 115404. doi: 10.11883/bzycj-2018-0276
Citation: ZHAO Qi, CHEN Xianfeng, DAI Huaming, YIN Shuhui, WANG Xiaotong, ZHANG Hongming, HUANG Chuyuan. Inhibition of explosion characteristic of premixed gases by filling patterns of rare earth metal materials[J]. Explosion And Shock Waves, 2019, 39(11): 115404. doi: 10.11883/bzycj-2018-0276

Inhibition of explosion characteristic of premixed gases by filling patterns of rare earth metal materials

doi: 10.11883/bzycj-2018-0276
  • Received Date: 2018-07-29
  • Rev Recd Date: 2018-09-28
  • Available Online: 2019-10-25
  • Publish Date: 2019-11-01
  • Using a 20 L spherical explosive device filled with porous rare earth metal materials, we investigated the explosion characteristics variation of the premixed methane-air mixture in two different filling patterns: spherical and flaky. The influences of blank rate and packed density on the explosion characteristics were considered. And the pressure sensor was used to record the explosion pressure inside the spherical device. It shows that the methane explosion pressure, the maximum pressure rise rate, and the explosion index are all proportional to the blank rate and inversely proportional to the packed density. The drop rate of the maximum explosion pressure of the flaky materials is greater than that of the spherical materials. The explosion suppression performance of the flaky materials is better than that of the spherical materials, and the dual function of the flaky materials has a stronger influence on the explosion power. The main mechanisms of fire and explosion suppression in the two different filling patterns are different.
  • loading
  • [1]
    刘洋, 高文傲, 李登科, 等. 基于光纤传感技术的易燃易爆气体泄漏监测研究 [J]. 爆破, 2017, 34(4): 22–26. DOI: 10.3963/j.issn.1001-487X.2017.04.005.

    LIU Yang, GAO Wenao, LI Dengke, et al. Research on leakage monitoring of flammable and explosive gas based on optical fiber sensing technology [J]. Blasting, 2017, 34(4): 22–26. DOI: 10.3963/j.issn.1001-487X.2017.04.005.
    [2]
    LIU Hongyong, HE Weitao, GUO Ji, et al. Risk propagation mechanism: Qingdao crude oil leaking and explosion case study [J]. Engineering Failure Analysis, 2015, 56: 555–561. DOI: 10.1016/j.engfailanal.2014.10.003.
    [3]
    CHEN C H, SHEEN Y N, WANG H Y. Case analysis of catastrophic underground pipeline gas explosion in Taiwan [J]. Engineering Failure Analysis, 2016, 65: 39–47. DOI: 10.1016/j.engfailanal.2016.03.013.
    [4]
    JI Tingchao, QIAN Xinming, YUAN Mengqi, et al. Case study of a natural gas explosion in Beijing, China [J]. Journal of Loss Prevention in the Process Industries, 2017, 49: 401–410. DOI: 10.1016/j.jlp.2017.07.013.
    [5]
    LI Qingzhao, LIN Baiquan, DAI Huaming, et al. Explosion characteristics of H2/CH4/air and CH4/coal dust/air mixtures [J]. Powder Technology, 2012, 229: 222–228. DOI: 10.1016/j.powtec.2012.06.036.
    [6]
    WANG Cheng, MA Tianbao, LU Jie. Influence of obstacle disturbance in a duct on explosion characteristics of coal gas [J]. Science China: Physics, Mechanics and Astronomy, 2010, 53(2): 269–278. DOI: 10.1007/s11433-009-0270-3.
    [7]
    HUO Y, CHOW W K. Flame propagation of premixed liquefied petroleum gas explosion in a tube [J]. Applied Thermal Engineering, 2016, 113: 891–901. DOI: 10.1016/j.applthermaleng.2016.11.040.
    [8]
    CICCARELLI G, JOHANSEN C T, PARRAVANI M. The role of shock-flame interactions on flame acceleration in an obstacle laden channel [J]. Combustion and Flame, 2010, 157(11): 2125–2136. DOI: 10.1016/j.combustflame.2010.05.003.
    [9]
    YU Minggao, ZHENG Kai, CHU Tingxiang. Gas explosion flame propagation over various hollow-square obstacles [J]. Journal of Natural Gas Science and Engineering, 2016, 30: 221–227. DOI: 10.1016/j.jngse.2016.02.009.
    [10]
    DAI Huaming, ZHAO Qi, LIN Baiquan, et al. Premixed combustion of low-concentration coal mine methane with water vapor addition in a two-section porous media burner [J]. Fuel, 2018, 213: 72–82. DOI: 10.1016/j.fuel.2017.09.123.
    [11]
    喻健良, 蔡涛, 李岳, 等. 丝网结构对爆炸气体淬熄的试验研究 [J]. 燃烧科学与技术, 2008, 14(2): 97–100. DOI: 10.3321/j.issn:1006-8740.2008.02.001.

    YU Jianliang, CAI Tao, LI Yue, et al. Experiment to quench explosion gas with structure of wire mesh [J]. Journal of Combustion Science and Technology, 2008, 14(2): 97–100. DOI: 10.3321/j.issn:1006-8740.2008.02.001.
    [12]
    BABKIN V S, KORZHAVIN A A, BUNEV V A. Propagation of premixed gaseous explosion flames in porous media [J]. Combustion and Flame, 1991, 87(2): 182–190. DOI: 10.1016/0010-2180(91)90168-B.
    [13]
    NIE Baisheng, HE Xueqiu, ZHANG Ruming, et al. The roles of foam ceramics in suppression of gas explosion overpressure and quenching of flame propagation [J]. Journal of Hazardous Materials, 2011, 192(2): 741–747. DOI: 10.1016/j.jhazmat.2011.05.083.
    [14]
    PANG Lei, WANG Chenxu, HAN Mengxing, et al. A study on the characteristics of the deflagration of hydrogen-air mixture under the effect of a mesh aluminum alloy [J]. Journal of Hazardous Materials, 2015, 299: 174–180. DOI: 10.1016/j.jhazmat.2015.06.027.
    [15]
    LV Pengfei, PANG Lei, JIN Jianghong, et al. Effects of hydrogen addition on the deflagration characteristics of hydrocarbon fuel/air mixture under a mesh aluminum alloy [J]. International Journal of Hydrogen Energy, 2016, 41(18): 7511–7517. DOI: 10.1016/j.ijhydene.2016.03.084.
    [16]
    杨杰, 肖述锋. 稀土铝镁合金阻隔防爆材料: 102747257B [P]. 2016-03-02.
    [17]
    邢志祥, 张贻国, 马国良. 网状铝合金抑爆材料抑爆性能研究 [J]. 中国安全科学学报, 2012, 22(2): 75–80. DOI: 10.16265/j.cnki.issn1003-3033.2012.02.025.

    XING Zhixiang, ZHANG Yiguo, MA Guoliang. Research on explosion suppression performance of reticulate aluminum alloy explosion suppression material [J]. China Safety Science Journal, 2012, 22(2): 75–80. DOI: 10.16265/j.cnki.issn1003-3033.2012.02.025.
    [18]
    WANG Cheng, HUANG Fenglei, ADDAI E K, et al. Effect of concentration and obstacles on flame velocity and overpressure of methane-air mixture [J]. Journal of Loss Prevention in the Process Industries, 2016, 43: 302–310. DOI: 10.1016/j.jlp.2016.05.021.
    [19]
    RALLIS C J, GARFORTH A M. The determination of laminar burning velocity [J]. Progress in Energy and Combustion Science, 1980, 6(4): 303–329. DOI: 10.1016/0360-1285(80)90008-8.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (5806) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return