Citation: | YAO Chengbao, WANG Hongliang, PU Xifeng, SHOU Liefeng, WANG Zhihuan. Numerical simulation of intense blast wave reflected on rigid ground[J]. Explosion And Shock Waves, 2019, 39(11): 112201. doi: 10.11883/bzycj-2018-0287 |
[1] |
乔登江. 核爆炸物理概论[M]. 北京: 国防工业出版社, 2003: 51−55.
|
[2] |
GLASSTONE S, DOLAN P J. The effects of nuclear weapons [R]. USA: Defense Technical Information Center, 1977: 453−501. DOI: 10.21236/ada087568.
|
[3] |
段晓瑜, 崔庆忠, 郭学永, 等. 炸药在空气中爆炸冲击波的地面反射超压实验研究 [J]. 兵工学报, 2016, 37(12): 2277–2283. DOI: 10.3969/j.issn.1000-1093.2016.12.013.
DUAN Xiaoyu, CUI Qingzhong, GUO Xueyong, et al. Experimental investigation of ground reflected overpressure of shock wave in air blast [J]. Acta Armamentarii, 2016, 37(12): 2277–2283. DOI: 10.3969/j.issn.1000-1093.2016.12.013.
|
[4] |
HIRT C W, AMSDEN A A, COOK J L. An arbitrary Lagrangian-Eulerian computing method for all flow speeds [J]. Journal of Computational Physics, 1974, 14(3): 227–253. DOI: 10.1016/0021-9991(74)90051-5.
|
[5] |
OSHER S, SETHIAN J A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations [J]. Journal of Computational Physics, 1988, 79(1): 12–49. DOI: 10.1016/0021-9991(88)90002-2.
|
[6] |
TRYGGVASON G, BUNNER B, ESMAEELI A, et al. A front-tracking method for the computations of multiphase flow [J]. Journal of Computational Physics, 2001, 169(2): 708–759. DOI: 10.1006/jcph.2001.6726.
|
[7] |
FEDKIW R P, ASLAM T, MERRIMAN B, et al. A non-oscillatory Eulerian approach to interfaces in multimaterial flows: the ghost fluid method [J]. Journal of Computational Physics, 1999, 152(2): 457–492. DOI: 10.1006/jcph.1999.6236.
|
[8] |
LIU T G, KHOO B C, WANG C W. The ghost fluid method for compressible gas-water simulation [J]. Journal of Computational Physics, 2005, 204(1): 193–221. DOI: 10.1016/j.jcp.2004.10.012.
|
[9] |
SCHOCH S, NORDIN-BATES K, NIKIFORAKIS N. An Eulerian algorithm for coupled simulations of elastoplastic-solids and condensed-phase explosives [J]. Journal of Computational Physics, 2013, 252: 163–194. DOI: 10.1016/j.jcp.2013.06.020.
|
[10] |
CROWL W K. Structures to resist the effects of accidental explosions [M]. USA: US Army, Navy and Air Force, US Government Printing Office, 1969: 205−315.
|
[11] |
徐维铮, 吴卫国. 爆炸波高精度数值计算程序开发及应用 [J]. 中国舰船研究, 2017, 12(3): 64–74. DOI: 10.3969/j.issn.1673-3185.2017.03.010.
XU Weizheng, WU Weiguo. Development of in-house high-resolution hydrocode for assessment of blast waves and its application [J]. Chinese Journal of Ship Research, 2017, 12(3): 64–74. DOI: 10.3969/j.issn.1673-3185.2017.03.010.
|
[12] |
TÜRKER L. Thermobaric and enhanced blast explosives (TBX and EBX) [J]. Defence Technology, 2016, 12(6): 423–445. DOI: 10.1016/j.dt.2016.09.002.
|
[13] |
张洪武, 何扬, 张昌权. 空中爆炸冲击波地面荷载的数值模拟 [J]. 爆炸与冲击, 1992, 12(2): 156–165.
ZHANG Hongwu, HE Yang, ZHANG Changquan. Numerical simulation on ground surface loading of shock wave from air explosions [J]. Explosion and Shock Waves, 1992, 12(2): 156–165.
|
[14] |
赵海涛, 王成. 空中爆炸问题的高精度数值模拟研究 [J]. 兵工学报, 2013, 34(12): 1536–1546. DOI: 10.3969/j.issn.1000-1093.2013.12.008.
ZHAO Haitao, WANG Cheng. High resolution numerical simulation of air explosion [J]. Acta Armamentarii, 2013, 34(12): 1536–1546. DOI: 10.3969/j.issn.1000-1093.2013.12.008.
|
[15] |
BAKER W E. Explosions in air [M]. USA: University of Texas Press, 1973: 55−95.
|
[16] |
姚成宝, 李若, 田宙, 等. 空气自由场中强爆炸冲击波传播二维数值模拟 [J]. 爆炸与冲击, 2015, 35(4): 585–590. DOI: 10.11883/1001-1455(2015)04-0585-06.
YAO Chengbao, LI Ruo, TIAN Zhou, et al. Two dimensional simulation for shock wave produced by strong explosion in free air [J]. Explosion and Shock Waves, 2015, 35(4): 585–590. DOI: 10.11883/1001-1455(2015)04-0585-06.
|
[17] |
姚成宝, 浦锡锋, 寿列枫, 等. 强爆炸冲击波在不均匀空气中传播数值模拟 [J]. 计算力学学报, 2015, 32(S1): 6–9.
YAO Chengbao, PU Xifeng, SHOU Liefeng, et al. Numeircal simulation of blast wave propagation in nonuniform air [J]. Chinese Journal of Computational Mechanics, 2015, 32(S1): 6–9.
|
[18] |
SYMBALISTY E M D, ZINN J, WHITAKER R W. RADFLO physics and algorithms: LA-12988-MS [R]. USA: Los Alamos National Lab, 1995. DOI: 10.2172/110714.
|
[19] |
SETHIAN J A. Evolution, implementation, and application of level set and fast marching methods for advancing fronts [J]. Journal of Computational Physics, 2001, 169(2): 503–555. DOI: 10.1006/jcph.2000.6657.
|
[20] |
SUSSMAN M, SMEREKA P, OSHER S. A level set approach for computing solutions to incompressible two-phase flow [J]. Journal of Computational Physics, 1994, 114(1): 146–159. DOI: 10.1006/jcph.1994.1155.
|
[21] |
DI Yana, LI Ruo, TANG Tao, et al. Level set calculations for incompressible two-phase flows on a dynamically adaptive grid [J]. Journal of Scientific Computing, 2007, 31(1/2): 75–98. DOI: 1007/s10915-006-9119-3.
|
[22] |
TORO E F. Riemann solvers and numerical methods for fluid dynamics [M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009: 102-200. DOI: 10.1007/b79761.
|
[23] |
LI R, WU S N. h-adaptive mesh method with double tolerance adaptive strategy for hyperbolic conservation laws [J]. Journal of Scientific Computing, 2013, 56(3): 616–636. DOI: 10.1007/s10915-013-9692-1.
|