Volume 39 Issue 11
Nov.  2019
Turn off MathJax
Article Contents
BAI Zhiling, DUAN Zhuoping, WEN Lijing, ZHANG Zhenyu, OU Zhuocheng, HUANG Fenglei. A multi-component Duan-Zhang-Kim mesoscopic reaction rate model for shock initiation of multi-component PBX explosives[J]. Explosion And Shock Waves, 2019, 39(11): 112101. doi: 10.11883/bzycj-2018-0410
Citation: BAI Zhiling, DUAN Zhuoping, WEN Lijing, ZHANG Zhenyu, OU Zhuocheng, HUANG Fenglei. A multi-component Duan-Zhang-Kim mesoscopic reaction rate model for shock initiation of multi-component PBX explosives[J]. Explosion And Shock Waves, 2019, 39(11): 112101. doi: 10.11883/bzycj-2018-0410

A multi-component Duan-Zhang-Kim mesoscopic reaction rate model for shock initiation of multi-component PBX explosives

doi: 10.11883/bzycj-2018-0410
  • Received Date: 2018-10-26
  • Rev Recd Date: 2019-01-10
  • Available Online: 2019-09-25
  • Publish Date: 2019-11-01
  • This paper offers a new method for calculating the reaction rate of the pore collapse hot-spot ignition in multi-component PBX explosives, and proposes a new mesoscopic reaction rate model capable of describing and predicting the shock initiation and detonation behavior of multi-component PBX explosives with any explosive components proportion as well as any explosive particle size. The pressure-time histories in the explosive samples calculated using this mesoscopic reaction rate model are in good agreement with the experimental data. The shock initiation and detonation process of PBX explosives is mainly controlled by both the hot-spot ignition processes and the combustion reaction processes. The PBXC03 explosive with the dominant component of HMX is mainly controlled by the hot-spot ignition and shows the accelerated reaction characteristics. With the dominant component of insensitive TATB, the critical initiation pressure of PBXC10 is high and the shock initiation behavior is controlled by the combustion reaction process, which shows a stable reaction characteristics.
  • loading
  • [1]
    BOLTON O, SIMKE L R, PAGORIA P F, et al. High power explosive with good sensitivity: a 2:1 cocrystal of CL-20: HMX [J]. Crystal Growth and Design, 2012, 12(9): 4311–4314. DOI: 10.1021/cg3010882.
    [2]
    TARVER C M, TRAN T D. Thermal decomposition models for HMX-based plastic bonded explosives [J]. Combustion and Flame, 2004, 137(1/2): 50–62. DOI: 10.1016/j.combustflame.2004.01.002.
    [3]
    URTIEW P A, FORBES J W, GARCIA F, et al. Shock Initiation of UF-TATB at 250 ℃ [C] // FURNISH M D, HORIE Y, THADHANI N N. Shock Compression of Condensed Matter-2001. United States: American Institute of Physics, 2002: 1039−1042. DOI: 10.1063/1.1483716.
    [4]
    AN Chongwei, LI Hequn, YE Baoyun, et al. Preparation and characterization of ultrafine HMX/TATB explosive co-crystals [J]. Central European Journal of Energetic Materials, 2017, 14(4): 876–887. DOI: 10.22211/cejem/77125.
    [5]
    WANG Z, GUO X, WU F, et al. Preparation of HMX/TATB composite particles using a mechanochemical approach [J]. Propellants, Explosives, Pyrotechnics, 2016, 41(2): 327–333. DOI: 10.1002/prep.201500136.
    [6]
    GREBENKIN K F. Comparative analysis of physical mechanisms of detonation initiation in HMX and in a low-sensitive explosive (TATB) [J]. Combustion, Explosion, and Shock Waves, 2009, 45(1): 78–87. DOI: 10.1007/s10573-009-0011-y.
    [7]
    AUSTIN R, BARTON N, HOWARD W, et al. Modeling pore collapse and chemical reactions in shock-loaded HMX crystals [J]. Journal of Physics: Conference Series, 2014, 500(5): 052002–052007. DOI: 10.1088/1742-6596/500/5/052002.
    [8]
    KAPAHI A. Dynamics of void collapse in shocked energetic materials: physics of void-void interactions [J]. Shock Waves, 2013, 23(6): 537–558. DOI: 10.1007/s00193-013-0439-6.
    [9]
    OZLEM M, SCHWENDEMAN D W, KAPILA A K, et al. A numerical study of shock-induced cavity collapse [J]. Shock Waves, 2012, 22(2): 89–117. DOI: 10.1007/s00193-011-0352-9.
    [10]
    TRAN L, UDAYKUMAR H S. Simulation of void collapse in an energetic material: Part 1: inert case [J]. Journal of Propulsion and Power, 2006, 22(5): 947–958. DOI: 10.2514/1.13146.
    [11]
    ZHOU Tingting, LOU Jianfeng, ZHANG Yangeng, et al. Hot spot formation and chemical reaction initiation in shocked HMX crystals with nanovoids: a large-scale reactive molecular dynamics study [J]. Physical Chemistry Chemical Physics, 2016, 18(26): 17627–17645. DOI: 10.1039/C6CP02015A.
    [12]
    MASSONI J, SAUREL R, BAUDIN G, et al. A mechanistic model for shock initiation of solid explosives [J]. Physics of Fluids, 1999, 11(3): 710–736. DOI: 10.1063/1.869941.
    [13]
    SOUERS P C, GARZA R, VITELLO P. Ignition & growth and JWL++ detonation models in coarse zones [J]. Propellants, Explosives, Pyrotechnics, 2002, 27(2): 62–71. DOI: 10.1002/1521-4087(200204)27:23.0.CO;2-5.
    [14]
    STARKENBERG J. Modeling detonation propagation and failure using explosive initiation models in a conventional hydrocode [C] // SHOR J M, MAIENSCHEIN J L. The 12th Symposium (International) on Detonation. USA: Office of Naval Research, 2002: 1001−1007.
    [15]
    SHAW M S, MENIKOFF R. A reactive burn model for shock initiation in a PBX: scaling and separability based on the hot spot concept [C] // PEIRIS C B S, ASAY B. The 14th Symposium (International) on Detonation. USA: Office of Naval Research, 2010.
    [16]
    DUAN Zhuoping, WEN Lijing, LIU Yan, et al. A pore collapse model for hot-spot ignition in shocked multi-component explosives [J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2010, 11(S): 19–24. DOI: 10.1515/IJNSNS.2010.11.S1.19.
    [17]
    KIM K. Development of a model of reaction rates in shocked multicomponent explosives [C] // LEE E L, SHORT J M. The 9th Symposium (International) on Detonation. USA: Office of the Chief of Naval Researche, 1989: 593−603.
    [18]
    WEN Lijing, DUAN Zhuoping, ZHANG Liansheng, et al. Effects of HMX particle size on the shock initiation of PBXC03 explosive [J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2012, 13(2): 189–194. DOI: 10.1515/ijnsns.2011.129.
    [19]
    温丽晶. PBX炸药冲击起爆细观反应速率模型研究[D]. 北京: 北京理工大学, 2011.

    WEN Lijing. Research on mesoscopic reaction rate model of shock initiation of PBX [D]. Beijing: Beijing Institute of Technology, 2011.
    [20]
    LIU Y R, DUAN Z P, ZHANG Z Y, et al. A mesoscopic reaction rate model for shock initiation of multi-component PBX explosives [J]. Journal of Hazardous Materials, 2016, 317: 44–51. DOI: 10.1016/j.jhazmat.2016.05.052.
    [21]
    URTIEW P A, TARVER C M. Shock initiation of energetic materials at different initial temperatures: review [J]. Combustion, Explosion, and Shock Waves, 2005, 41(6): 766–776. DOI: 10.1007/s10573-005-0085-0.
    [22]
    URTIEW P A, VANDERSALL K S, TARVER C M, et al. Initiation of heated PBX-9501 explosive when exposed to dynamic loading: UCRL-CONF-214667 [R]. United States: Lawrence Livermore National Laboratory, 2005.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(6)

    Article Metrics

    Article views (5191) PDF downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return