Volume 39 Issue 12
Dec.  2019
Turn off MathJax
Article Contents
CHEN Cai, SHI Quan, YOU Zhifeng, GUO Chiming, GE Hongyu. Influences of target plates with water walls on penetration capability of high-velocity fragments[J]. Explosion And Shock Waves, 2019, 39(12): 125103. doi: 10.11883/bzycj-2018-0414
Citation: CHEN Cai, SHI Quan, YOU Zhifeng, GUO Chiming, GE Hongyu. Influences of target plates with water walls on penetration capability of high-velocity fragments[J]. Explosion And Shock Waves, 2019, 39(12): 125103. doi: 10.11883/bzycj-2018-0414

Influences of target plates with water walls on penetration capability of high-velocity fragments

doi: 10.11883/bzycj-2018-0414
  • Received Date: 2018-10-29
  • Rev Recd Date: 2019-04-03
  • Available Online: 2019-11-25
  • Publish Date: 2019-12-01
  • To overcome the high-risk and low-efficiency problems in large-volume ammunition fragmentation tests, a new method was proposed by setting water walls in front of target plates for comprehensively collecting the damage parameters of the fragments. The dynamic simulation software AUTODYN was used to simulate the penetration processes of the fragments into the target plates with the water walls and without the water walls. The influences of the thickness of the water wall and the incident angle of the fragment on the penetration capability was analyzed, and the effectiveness of the proposed method was verified by the test. The calculation results show that compared with the target plates without the water walls, the target plates with the water walls can greatly reduce the penetration capability of fragments. The results are also in good agreement with the test data, which indicates that it is feasible to use the target plates with the water walls to collect the damage parameters of the fragments in the actual tests.
  • loading
  • [1]
    吴晓颖, 李帆, 张万君, 等. 装备毁伤模拟试验方案的设计与优化 [J]. 四川兵工学报, 2014, 35(10): 5–7. DOI: 10.11809/scbgxb2014.10.002.

    WU Xiaoying, LI Fan, ZHANG Wanjun, et al. Design and optimization of equipment damage simulation test [J]. Journal of Sichuan Ordnance, 2014, 35(10): 5–7. DOI: 10.11809/scbgxb2014.10.002.
    [2]
    张志彪, 黄风雷. 内部爆炸加载下变壁厚壳体破碎性研究 [J]. 北京理工大学学报, 2015, 35(10): 1001–1005. DOI: 10.15918/j.tbit1001-0645.2015.10.003.

    ZHANG Zhibiao, HUANG Fenglei. Study of variable wall thickness shell fragmentation under internal explosive loading [J]. Transactions of Beijing Institute of Technology, 2015, 35(10): 1001–1005. DOI: 10.15918/j.tbit1001-0645.2015.10.003.
    [3]
    宋桂飞, 李成国, 夏福君, 等. 回收战斗部破片的新型爆炸容器及应用 [J]. 爆炸与冲击, 2008, 28(4): 372–377. DOI: 10.3321/j.issn:1001-1455.2008.04.015.

    SONG Guifei, LI Chengguo, XIA Fujun, et al. A new explosion vessel used to recover warhead fragments and its application [J]. Explosion and Shock Waves, 2008, 28(4): 372–377. DOI: 10.3321/j.issn:1001-1455.2008.04.015.
    [4]
    张玉令. 群爆弹药破片初始场及其设防安全距离研究[D]. 石家庄: 军械工程学院, 2012: 46−54.
    [5]
    毛亮, 姜春兰, 严翰新, 等. 可瞄准预制破片战斗部数值模拟与试验研究 [J]. 振动与冲击, 2012, 31(13): 66–70, 75. DOI: 10.3969/j.issn.1000-3835.2012.13.014.

    MAO Liang, JIANG Chunlan, YAN Hanxin, et al. Numerical simulation and experiment on aimable warhead of premade fragment [J]. Journal of Vibration and Shock, 2012, 31(13): 66–70, 75. DOI: 10.3969/j.issn.1000-3835.2012.13.014.
    [6]
    隋树元, 王树山. 终点效应学[M]. 北京: 国防工业出版社, 2000: 65−102.
    [7]
    熊志平. GJB 3197-1998炮弹试验方法[S]. 1998: 94−108.
    [8]
    张国伟. 终点效应及靶场试验[M]. 北京: 北京理工大学出版社, 2009: 265−282.
    [9]
    王林, 刘永付, 李晓辉, 等. 大当量杀伤战斗部破片飞散特性试验方法研究 [J]. 弹箭与制导学报, 2012, 32(6): 68–70. DOI: 10.3969/j.issn.1673-9728.2012.06.020.

    WANG Lin, LIU Yongfu, LI Xiaohui, et al. Study on the scatter of high capacity head fragments [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2012, 32(6): 68–70. DOI: 10.3969/j.issn.1673-9728.2012.06.020.
    [10]
    宋顺成, 王军, 王建军. 钨合金长杆弹侵彻陶瓷层合板的数值模拟 [J]. 爆炸与冲击, 2005, 25(2): 102–106. DOI: 10.3321/j.issn:1001-1455.2005.02.002.

    SONG Shuncheng, WANG Jun, WANG Jianjun. Numerical simulation for penetration of ceramic composite plate by long-rod projectile of tungsten alloy [J]. Explosion and Shock Waves, 2005, 25(2): 102–106. DOI: 10.3321/j.issn:1001-1455.2005.02.002.
    [11]
    徐金中, 汤文辉. 钨合金长杆弹侵彻玻璃靶板的SPH方法数值模拟 [J]. 弹箭与制导学报, 2008, 28(6): 95–98, 108. DOI: 10.3969/j.issn.1673-9728.2008.06.027.

    XU Jinzhong, TANG Wenhui. Numerical simulation with SPH method for long rod tungsten alloy projectile penetration into glass [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2008, 28(6): 95–98, 108. DOI: 10.3969/j.issn.1673-9728.2008.06.027.
    [12]
    康德, 严平. 基于LS-DYNA的高速破片水中运动特性流固耦合数值模拟 [J]. 爆炸与冲击, 2014, 34(5): 534–538. DOI: 10.11883/1001-1455(2014)05-0534-05.

    KANG De, YAN Ping. Movement characteristics of high-velocity fragments in water medium: numerical simulation using LS-DYNA [J]. Explosion and Shock Waves, 2014, 34(5): 534–538. DOI: 10.11883/1001-1455(2014)05-0534-05.
    [13]
    张洪才, 何波. 有限元分析[M]. 北京: 机械工业出版社, 2012: 1−3.
    [14]
    翁佩英, 任国民, 于骐. 弹药靶场试验[M]. 北京: 兵器工业出版社, 1996: 101−108.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(2)

    Article Metrics

    Article views (4939) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return