Volume 39 Issue 12
Dec.  2019
Turn off MathJax
Article Contents
BAO Kuo, ZHANG Xianfeng, TAN Mengting, CHEN Beibei, WEI Haiyang. Ballistic test and numerical simulation on penetration of a boron-carbide-ceramic composite target by a bullet[J]. Explosion And Shock Waves, 2019, 39(12): 123102. doi: 10.11883/bzycj-2018-0462
Citation: BAO Kuo, ZHANG Xianfeng, TAN Mengting, CHEN Beibei, WEI Haiyang. Ballistic test and numerical simulation on penetration of a boron-carbide-ceramic composite target by a bullet[J]. Explosion And Shock Waves, 2019, 39(12): 123102. doi: 10.11883/bzycj-2018-0462

Ballistic test and numerical simulation on penetration of a boron-carbide-ceramic composite target by a bullet

doi: 10.11883/bzycj-2018-0462
  • Received Date: 2018-11-19
  • Rev Recd Date: 2019-03-22
  • Publish Date: 2019-12-01
  • Boron carbide (B4C) ceramic has been widely used in armor fence due to its high hardness and low density. Ballistic performance of B4C ceramic and its composite targets has been one of the focuses recently. Ballistic performance of B4C ceramic composite targets defending 12.7 mm calibre armor-piercing bullets were explored through depth-of-penetration experiments and the corresponding numerical simulation model was established. The numerical simulation model for 12.7 mm calibre armor-piercing bullets penetrating into B4C ceramic composite targets was verified through the comparison between numerical results and experimental data. The influences of target configuration, back layer thickness and type on the ballistic performance of the composite targets were explored. It can be figured out from the results that for the composite targets with same areal density, the thicker the ceramic target, the better its ballistic performance; the increasing rate in the ballistic performance of the ceramic composite target decreases when the areal density increases and the ceramic thickness keeps constant. Ceramic/polyethylene (PE) structures are more suitable for defending against penetration by low-velocity bullets, while ceramic/Al structures are more suitable for defending against penetration by high-velocity bullets.
  • loading
  • [1]
    WILKINS M L, LANDINGHAM R L, HONODEL C A. Light-armor program. Fifth progress report: UCR L-50980 [R]. USA: Lawrence Livermore national Laboratory, 1971.
    [2]
    JOHNSON G R, HOLMQUIST T J. Response of boron carbide subjected to large strains, high strain rates, and high pressures [J]. Journal of Applied Physics, 1999, 85(12): 8060–8073. DOI: 10.1063/1.370643.
    [3]
    HOLMQUIST T J, JOHNSON G R. Response of boron carbide subjected to high-velocity impact [J]. International Journal of Impact Engineering, 2008, 35(8): 742–752. DOI: 10.1016/j.ijimpeng.2007.08.003.
    [4]
    GRADY D E. Shock-wave strength properties of boron carbide and silicon carbide [J]. Le Journal De Physique IV, 1994, 4(C8): 385–391. DOI: 10.1051/jp4:1994859.
    [5]
    WESTERLING L, LUNDBERG P, LUNDBERG B. Tungsten long-rod penetration into confined cylinders of boron carbide at and above ordnance velocities [J]. International Journal of Impact Engineering, 2001, 25(7): 703–714. DOI: 10.1016/S0734-743X(00)00072-5.
    [6]
    ORPHAL D L, FRANZEN R R, CHARTERS A C, et al. Penetration of confined boron carbide targets by tungsten long rods at impact velocities from 1.5 to 5.0 km/s [J]. International Journal of Impact Engineering, 1997, 19(1): 15–29. DOI: 10.1016/S0734-743X(96)00004-8.
    [7]
    WILKINS M L. Second progress report of light amour program: UCRL-50349 [R]. USA: Lawrence Livermore Laboratory Report, 1967.
    [8]
    WILKINS M L. Third progress report of light amour program: UCRL-50460 [R]. USA: Lawrence Livermore Laboratory Report, 1968.
    [9]
    卢君, 陈斌, 曾首义. 7.62 mm口径模拟弹侵彻碳化硼陶瓷复合靶板的数值模拟[C] // 第19届全国结构工程学术会议论文集. 济南, 2010: 116−120.
    [10]
    孙炜海, 鞠桂玲, 杨班权. 平头弹丸侵彻B4C陶瓷/金属复合靶板的数值模拟 [J]. 装甲兵工程学院学报, 2014, 28(1): 45–48. DOI: 10.11732/j.issn.1672-1497.2014.01.010.

    SUN Weihai, JU Guiling, YANG Banquan. Numerical simulation on penetration of B4C ceramic/metal composite targets struck by flat-ended projectiles [J]. Journal of Academy of Armored Force Engineering, 2014, 28(1): 45–48. DOI: 10.11732/j.issn.1672-1497.2014.01.010.
    [11]
    ANDERSON Jr C E, BURKINS M, WALKER J, et al. Time-resolved penetration of B4C tiles by the APM2 bullet [J]. Computer Modeling in Engineering and Sciences, 2005, 8(2): 91–104. DOI: 10.1525/ae.1983.10.2.02a00140.
    [12]
    GOOCH W A, BURKINS M S, HAUVER G, et al. Dynamic X-ray imaging of the penetration of boron carbide [J]. Le Journal De Physique IV, 2000, 10: 583–588.
    [13]
    STRASSBURGER E, BAUER S. Analysis of the interaction of projectiles with ceramic targets by means of flash X-ray cinematography and optical methods [C] // Proceedings of the 41st International Conference on Advanced Ceramics and Composites. Hoboken, NJ, USA: John Wiley & Sons Inc, 2018: 205−219. DOI: 10.1002/9781119474678.ch20.
    [14]
    JOHNSON G R, COOK W H, JOHNSON G, et al. A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures [C] // Proceedings of the 7th International Symposium on Ballistics. The Hague, Netherlands, 1983: 541−547.
    [15]
    侯二永. 陶瓷间隙靶抗12.7 mm穿甲燃烧弹机理及性能研究[D]. 长沙: 国防科学技术大学, 2008: 16−17. DOI: 10.7666/d.y1523731.
    [16]
    张伟, 魏刚, 肖新科. 2A12铝合金本构关系和失效模型 [J]. 兵工学报, 2013, 34(3): 276–282. DOI: 10.3969/j.issn.1000-1093.2013.03.004.

    ZHANG Wei, WEI Gang, XIAO Xinke. Constitutive relation and fracture criterion of 2A12 aluminum alloy [J]. Acta Armamentarii, 2013, 34(3): 276–282. DOI: 10.3969/j.issn.1000-1093.2013.03.004.
    [17]
    李春雷. 2A12铝合金本构关系实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2006: 42.

    LI Chunlei. Experimental investigation into the constitutive relationship of 2A12 aluminum alloy[D]. Harbin: Harbin Institute of Technology, 2006: 42.
    [18]
    唐恩凌, 施晓涵, 王猛, 等. 高速碰撞下圆柱壳自由梁的穿孔特性 [J]. 爆炸与冲击, 2016, 36(1): 121–128. DOI: 10.11883/1001-1455(2016)01-0121-08.

    TANG Enling, SHI Xiaohan, WANG Meng, et al. Perforation characteristics of cylindrical shell free beam under high-speed impact [J]. Explosion and Shock Waves, 2016, 36(1): 121–128. DOI: 10.11883/1001-1455(2016)01-0121-08.
    [19]
    JOHNSON G R, HOLMQUIST T J. An improved computational constitutive model for brittle materials [C] // AIP Conference Proceedings, 1994, 309(1). DOI: 10.1063/1.46199.
    [20]
    谭华. 实验冲击波物理[M]. 北京: 国防工业出版社, 2018: 78−87.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(4)

    Article Metrics

    Article views (5367) PDF downloads(172) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return