Volume 39 Issue 11
Nov.  2019
Turn off MathJax
Article Contents
ZHU Xiang, LIU Hong, LU Xinzheng, WANG Rui. Experimental study on impact resistance of steel reinforced concrete members[J]. Explosion And Shock Waves, 2019, 39(11): 115102. doi: 10.11883/bzycj-2018-0500
Citation: ZHU Xiang, LIU Hong, LU Xinzheng, WANG Rui. Experimental study on impact resistance of steel reinforced concrete members[J]. Explosion And Shock Waves, 2019, 39(11): 115102. doi: 10.11883/bzycj-2018-0500

Experimental study on impact resistance of steel reinforced concrete members

doi: 10.11883/bzycj-2018-0500
  • Received Date: 2018-12-17
  • Rev Recd Date: 2019-04-11
  • Available Online: 2019-10-25
  • Publish Date: 2019-11-01
  • In this work we carried out a lateral impact test of steel reinforced concrete (SRC) members using a super heavy drop weight impact tester, studied the whole process of impact and the ultimate failure mode of drop weight impacted SRC members, and analyzed the time history curves of the impact force, the displacement and the axial force, with the effects of different impact velocities, impact energies, axial pressures and boundary conditions on the dynamic response of SRC members compared. The following results were achieved: the outer concrete of the SRC members is seriously damaged under drop weight impact; the larger the impact energy of the drop weight, the more likely the shear failure of the outer concrete; the internal rebar and H-shaped steel only have a limited bending deformation; and the impact resistance of SRC is generally good. Within the parameters of this test, the impact force and the mid-span displacement of SRC increase with the increase of the impact velocity; the increase of the axial pressure increases the peak value of the impact of SRC, and the impact time and mid-span displacement decrease. Compared with the boundary conditions of one fixed end, one simply supported end and the two simple supported ends, the boundary of the two fixed ends is the best for the impact resistance of SRC.
  • loading
  • [1]
    叶列平, 方鄂华. 钢骨混凝土构件的受力性能研究综述 [J]. 土木工程学报, 2000, 33(5): 1–12. DOI: 10.15951/j.tmgcxb.2000.05.001.

    YE Lieping, FANG Ehua. State of the art of study behaviors of steel reinforced concrete structure [J]. China Civil Engineering Journal, 2000, 33(5): 1–12. DOI: 10.15951/j.tmgcxb.2000.05.001.
    [2]
    叶列平, 方鄂华, 周正海, 等. 钢骨混凝土柱的轴压力限值 [J]. 建筑结构学报, 1997, 18(5): 43–50. DOI: 10.14006/j.jz.jgxb.1997.05.005.

    YE Lieping, FANG Ehua, ZHOU Zhenghai, et al. Axial load limit for steel reinforced concrete columns [J]. Journal of Building Structures, 1997, 18(5): 43–50. DOI: 10.14006/j.jz.jgxb.1997.05.005.
    [3]
    周颖, 缪驰, 闫峰, 等. 钢骨混凝土连梁联肢剪力墙抗震性能试验研究及有限元分析 [J]. 建筑结构学报, 2015, 36(3): 36–45. DOI: 10.14006/j.jzjgxb.2015.03.005.

    ZHOU Ying, MIAO Chi, YAN Feng, et al. Experimental study and FEA of seismic performance of coupled shear walls with steel reinforced concrete coupling beams [J]. Journal of Building Structures, 2015, 36(3): 36–45. DOI: 10.14006/j.jzjgxb.2015.03.005.
    [4]
    蒋晶. 异形钢骨混凝土柱侧向抗冲击性能研究[D]. 沈阳: 沈阳建筑大学, 2014.

    JIANG Jing. Research on resistance to lateral impact properties of the special-shaped steel reinforced concrete columns [D]. Shenyang: Shenyang Jianzhu University, 2014.
    [5]
    张玲. 钢骨混凝土桥墩静动响应研究[D]. 南京: 南京工业大学, 2015.

    ZHANG Ling. Research on static and dynamic response of steel reinforced concrete bridge piers [D]. Nanjing: Nanjing Tech University, 2015.
    [6]
    朱翔, 曹瑞东, 康婷婷, 等. 侧向冲击荷载作用下钢骨混凝土柱抗冲击性能研究 [J]. 防灾减灾工程学报, 2017(04): 161–170. DOI: 10.13409/j.cnki.jdpme.2017.04.023.

    ZHU Xiang, CAO Ruidong, KANG Tingting, et al. Study on the impact resistance of steel reinforced concrete columns under lateral impact loads [J]. Journal of Disaster Prevention and Mitigation Engineering, 2017(04): 161–170. DOI: 10.13409/j.cnki.jdpme.2017.04.023.
    [7]
    PAN J, FANG H, XU M C, et al. Study on the performance of energy absorption structure of bridge piers against vehicle collision [J]. Thin-Walled Structures, 2018, 130: 85–100. DOI: 10.1016/j.tws.2018.05.008.
    [8]
    朱翔, 陆新征, 杜永峰, 等. 列车脱轨后运行姿态模拟 [J]. 振动与冲击, 2014, 33(23): 126–130. DOI: 10.13465/j.cnki.jvs.2014.23.026.

    ZHU Xiang, LU Xinzheng, DU Yongfeng, et al. Simulation for running attitude of a train after derailment [J]. Journal of Vibration and Shock, 2014, 33(23): 126–130. DOI: 10.13465/j.cnki.jvs.2014.23.026.
    [9]
    GHOLIPOUR G, ZHANG C, LI M. Effects of soil–pile interaction on the response of bridge pier to barge collision using energy distribution method [J]. Structure and Infrastructure Engineering, 2018, 14(11): 1–15. DOI: 10.1080/15732479.2018.1450427.
    [10]
    YOUSUF M, UY B, TAO Z, et al. Transverse impact resistance of hollow and concrete filled stainless steel columns [J]. Journal of Constructional Steel Research, 2013, 82: 177–189. DOI: 10.1016/j.jcsr.2013.01.005.
    [11]
    HAN L H, HOU C C, ZHAO X L, et al. Behaviour of high-strength concrete filled steel tubes under transverse impact loading [J]. Journal of Constructional Steel Research, 2014, 92: 25–39. DOI: 10.1016/j.jcsr.2013.09.003.
    [12]
    朱翔, 陆新征, 杜永峰, 等. 外包钢管加固RC柱抗冲击试验研究 [J]. 工程力学, 2016, 33(6): 23–33. DOI: 10.6052/j.issn.1000-4750.2014.11.0991.

    ZHU Xiang, LU Xinzheng, DU Yongfeng, et al. Experimental study on impact resistance of RC columns strengthened with steel jacket [J]. Engineering Mechanics, 2016, 33(6): 23–33. DOI: 10.6052/j.issn.1000-4750.2014.11.0991.
    [13]
    朱翔, 陆新征, 杜永峰, 等. 新型复合柱抗冲击试验研究及有限元分析 [J]. 工程力学, 2016, 33(8): 158–166. DOI: 10.6052/j.issn.1000-4750.2015.03.0153.

    ZHU Xiang, LU Xinzheng, DU Yongfeng, et al. Experimental study and finite element analysis of impact resistance of novel composite columns [J]. Engineering Mechanics, 2016, 33(8): 158–166. DOI: 10.6052/j.issn.1000-4750.2015.03.0153.
    [14]
    张南, 王慧, 陈旭, 等. 钢骨混凝土桥墩抗撞击性能试验研究 [J]. 中国公路学报, 2017, 30(11): 99–107. DOI: 10.19721/j.cnki.1001-7372.2017.11.010.

    ZHANG Nan, WANG Hui, CHEN Xu, et al. Experimental research on impact performance of steel reinforced concrete bridge piers [J]. China Journal of Highway and Transport, 2017, 30(11): 99–107. DOI: 10.19721/j.cnki.1001-7372.2017.11.010.
    [15]
    陈佳佳, 张南, 巫业双, 等. 内置钢骨形式对混凝土桥墩撞击性能影响研究 [J]. 防灾减灾工程学报, 2018, 38(1): 72–80. DOI: 10.13409/j.cnki.jdpme.2018.01.010.

    CHEN Jiajia, ZHANG Nan, WU Yeshuang, et al. Research on influence of embedded steel skeleton form on impact performance of concrete piers [J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(1): 72–80. DOI: 10.13409/j.cnki.jdpme.2018.01.010.
    [16]
    朱翔. 脱轨列车撞击站房结构的非线性响应及连续倒塌研究[D]. 兰州: 兰州理工大学, 2015.

    ZHU Xiang. Nonlinear response and progressive collapse research of railway station due to the impact of derailed trains [D]. Lanzhou: Lanzhou University of Technology, 2015.
    [17]
    胡昌明, 韩林海. 圆形钢管混凝土叠合构件抗冲击性能试验研究 [J]. 土木工程学报, 2016(10): 11–17. DOI: 10.15951/j.tmgcxb.2016.10.004.

    HU Changming, HAN Linhai. Experimental behavior of circular concrete-encased concrete-filled steel tubes under lateral impact [J]. China Civil Engineering Journal, 2016(10): 11–17. DOI: 10.15951/j.tmgcxb.2016.10.004.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views (5741) PDF downloads(78) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return