Volume 39 Issue 7
Jul.  2019
Turn off MathJax
Article Contents
XU Songlin, SHAN Junfang, WANG Pengfei, HU Shisheng. Penetration performance of concrete under triaxial stress[J]. Explosion And Shock Waves, 2019, 39(7): 071101. doi: 10.11883/bzycj-2019-0034
Citation: XU Songlin, SHAN Junfang, WANG Pengfei, HU Shisheng. Penetration performance of concrete under triaxial stress[J]. Explosion And Shock Waves, 2019, 39(7): 071101. doi: 10.11883/bzycj-2019-0034

Penetration performance of concrete under triaxial stress

doi: 10.11883/bzycj-2019-0034
  • Received Date: 2019-01-24
  • Rev Recd Date: 2019-03-15
  • Publish Date: 2019-07-01
  • In this study we developed a hydraulic servo control system for experimental study on concrete penetration under triaxial stress for independently-controlled triaxial confinement on cubic specimens, and launched bullets to penetrate concrete specimens with high pressure, using the strain gauges to record the dynamic compression signals and side friction signals on the six bars of six surfaces of the specimens. Taking the concrete specimens as an example, we investigated the cubic specimens’ penetration performance under different stress states based on the independently-controlled triaxial confinement of 0-100 MPa, and obtained their penetration differences under unilateral, unilateral and bidirectional lateral confinements, revealing the effect of the stress state on penetration performance.
  • loading
  • [1]
    CHEN X W, LI Q M. Deep penetration of non-deformable projectile with different geometrical characteristics [J]. International Journal of Impact Engineering, 2002, 27: 619–637. DOI: 10.1016/S0734-743X(02)00005-2.
    [2]
    CHEN X W, LI J C. Analysis on the resistive force in penetration of a rigid projectile [J]. Defense Technology, 2014, 10: 285–293. DOI: 10.1016/j.dt.2014.06.007.
    [3]
    LI Q M, CHEN X W. Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile [J]. International Journal of Impact Engineering, 2003, 28: 93–116. DOI: 10.1016/S0734-743X(02)00037-4.
    [4]
    KENNEDY R P. A review of procedures for the analysis and design of concrete structures to resist missile impact effects [J]. Nuclear Engineering and Design, 1976, 37: 183–203. DOI: 10.1016/0029-5493(76)90015-7.
    [5]
    YOUNG C W. Penetration equations : SAND 97-2426 [R]. 1997.
    [6]
    FORRESTAL M J, FREW D J, HANCHAK S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectile [J]. International Journal of Impact Engineering, 1996, 18(5): 465–476. DOI: 10.1016/0734-743X(95)00048-F.
    [7]
    QIAN L, YANG Y, LIU T. A semi-analytical model for truncated ogive-nose projectiles penetration into semi-analytical concrete targets [J]. International Journal of Impact Engineering, 2000, 24(9): 947–955. DOI: 10.1016/S0734-743X(00)00008-7.
    [8]
    文鹤鸣. 混凝土靶板冲击响应的经验公式 [J]. 爆炸与冲击, 2003, 23(3): 267–274. DOI: 10.11883/1001-1455(2003)03-0267-08.

    WEN Heming. Empirical equations for the impact response of concrete targets [J]. Explosion and Shock Waves, 2003, 23(3): 267–274. DOI: 10.11883/1001-1455(2003)03-0267-08.
    [9]
    薛建锋, 沈培辉, 王晓鸣. 弹体斜侵彻混凝土靶的实验研究及其数值模拟 [J]. 爆炸与冲击, 2017, 37(3): 536–543. DOI: 10.11883/1001-1455(2017)03-0536-08.

    XUE Jianfeng, SHEN Peihui, WANG Xiaoming. Experimental study and numerical simulation of projectile obliquely penetrating into concrete target [J]. Explosion and Shock Waves, 2017, 37(3): 536–543. DOI: 10.11883/1001-1455(2017)03-0536-08.
    [10]
    宋春明, 李干, 王明洋, 等. 不同速度段弹体侵彻岩石靶体的理论分析 [J]. 爆炸与冲击, 2018, 38(2): 250–257. DOI: 10.11883/1001-1455(2018)02-0250-08.

    SONG Chunming, LI Gan, WANG Mingyang, et al. Theoretical analysis of projectiles penetrating into rock targets at different velocities [J]. Explosion and Shock Waves, 2018, 38(2): 250–257. DOI: 10.11883/1001-1455(2018)02-0250-08.
    [11]
    徐松林, 王鹏飞, 赵坚, 等. 基于三维Hopkinson杆的混凝土动态性能研究 [J]. 爆炸与冲击, 2017, 37(2): 180–185. DOI: 10.11883/1001-1455(2017)02-0180-06.

    XU Songlin, WANG Pengfei, ZHAO Jian, et al. Dynamic behaviors of concrete under static triaxial loading using "3D-Hopkinson bar" [J]. Explosion and Shock Waves, 2017, 37(2): 180–185. DOI: 10.11883/1001-1455(2017)02-0180-06.
    [12]
    徐松林, 王鹏飞, 单俊芳, 等. 真三轴静载作用下混凝土的动态力学性能研究 [J]. 振动与冲击, 2018, 37(15): 59–67. DOI: 10.13465/j.cnki.jvs.2018.15.008.

    XU Songlin, WANG Pengfei, SHAN Junfang, et al. Dynamic behavior of concrete under static tri-axial loadings [J]. Journal of Vibration and Shock, 2018, 37(15): 59–67. DOI: 10.13465/j.cnki.jvs.2018.15.008.
    [13]
    王礼立. 应力波基础 [M]. 2版. 北京: 国防工业出版社, 2010: 270−300.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (6352) PDF downloads(150) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return