Volume 40 Issue 2
Jan.  2020
Turn off MathJax
Article Contents
ZHAO Zhangyong, QIU Yanyu, ZI Min, XING Huadao, WANG Mingyang. Experimental study on dynamic compression of unsaturated calcareous sand[J]. Explosion And Shock Waves, 2020, 40(2): 023102. doi: 10.11883/bzycj-2019-0066
Citation: ZHAO Zhangyong, QIU Yanyu, ZI Min, XING Huadao, WANG Mingyang. Experimental study on dynamic compression of unsaturated calcareous sand[J]. Explosion And Shock Waves, 2020, 40(2): 023102. doi: 10.11883/bzycj-2019-0066

Experimental study on dynamic compression of unsaturated calcareous sand

doi: 10.11883/bzycj-2019-0066
  • Received Date: 2019-03-04
  • Rev Recd Date: 2019-05-23
  • Available Online: 2020-01-25
  • Publish Date: 2020-02-01
  • The dynamic compression tests of calcareous sands with different moisture contents under quasi-one-dimensional strain conditions were carried out using a calibrated SHPB system in the average strain rate ranging from 209 s−1 to 1137 s−1. The test results show that the calibration of the sensitivity coefficient of the semiconductor strain gauge and the dispersion of the pressure bar have a significant influence on the accuracy of the test results. When the strain of the calcareous sand is below 0.025, the tangential modulus of moist calcareous sand is higher than that of dry sand, but the opposite is true when the strain is above 0.025. The tangential modulus of moist samples decreases first and then increases with the increase of the water content. By analyzing the variation of axial stress-strain curve and lateral pressure coefficient of unsaturated calcareous sand after lock-in phenomenon, a model of the phenomenon of unsaturated calcareous sand is proposed.
  • loading
  • 刘崇权, 杨志强, 汪稔. 钙质土力学性质研究现状与进展 [J]. 岩土力学, 1995(4): 74–84.

    LIU C Q, YANG Z Q, WANG R. The present condition and development in studies of mechanical properties of calcareous soils [J]. Rock and Soil Mechanics, 1995(4): 74–84.
    DATTA M, RAO G V, GULHATI S K. The nature and engineering behavior of carbonate soils at Bombay High, India [J]. Marine Geotechnology, 1981, 4(4): 307–341. DOI: 10.1080/10641198109379830.
    STERIANOS B. Geotechnical properties of carbonate soils with reference to an improved engineering classification [D]. Rondebosch: University of Cape Town, 1988: 1−4.
    ALBA J L, AUDIBERT J M. Pile design in calcareous and carbonaceous granular materials, and historic review [C] // Proceedings of the 2nd international conference on engineering for calcareous sediments. Rotterdam: AA Balkema. 1999, 1: 29−44.
    WANG X, JIAO Y, WANG R, et al. Engineering characteristics of the calcareous sand in Nansha Islands, South China Sea [J]. Engineering Geology, 2011, 120(1): 40–47. DOI: 10.1016/j.enggeo.2011.03.011.
    曹梦, 叶剑红. 南海钙质砂蠕变-应力-时间四参数数学模型 [J]. 岩土力学, 2019(5): 1771–1777. DOI: 10.16285/j.rsm.2018.1267.

    CAO M, YE J H. Creep-stress-time four parameters mathematical model of calcareous sand in South China Sea [J]. Rock and Soil Mechanic, 2019(5): 1771–1777. DOI: 10.16285/j.rsm.2018.1267.
    AL-DOURI R H, POULOS H G. Static and cyclic direct shear tests on carbonate sands [J]. Geotechnical Testing Journal, 1992, 15(2): 138–157. DOI: 10.1520/GTJ10236J.
    COOP M R. The mechanics of uncemented carbonate sands [J]. Géotechnique, 1990, 40(4): 607–626. DOI: 10.1680/geot.1990.40.4.607.
    COOP M R, ATKINSON J H. The mechanics of cemented carbonate sands [J]. Géotechnique, 1993, 43(1): 53–67. DOI: 10.1680/geot.1993.43.1.53.
    文祝, 邱艳宇, 紫民, 等. 钙质砂的准一维应变压缩试验研究 [J]. 爆炸与冲击, 2019, 39(3): 1–11. DOI: 10.11883/bzycj-2018-0015.

    WEN Z, QIU Y Y, ZI M, et al. Experimental study on quasi-one-dimensional strain compression of calcareous sand [J]. Explosion and Shock Waves, 2019, 39(3): 1–11. DOI: 10.11883/bzycj-2018-0015.
    魏久淇, 王明洋, 邱艳宇, 等. 钙质砂动态力学特性试验研究 [J]. 振动与冲击, 2018, 37(24): 7–12. DOI: 10.13465/j.cnki.jvs.2018.24.002.

    WEI J Q, WANG M Y, QIU Y Y, et al. Impact compressive response of calcareous sand [J]. Journal of Vibration and Shock, 2018, 37(24): 7–12. DOI: 10.13465/j.cnki.jvs.2018.24.002.
    VEYERA G E. Uniaxial stress-strain behavior of unsaturated soils at high strain rates: WR-TL-93-3523 [R]. Fort Belvoir, VA: Defense Technical Information Center, 1994.
    BARR A D, CLARKE S D, TYAS A, et al. Effect of moisture content on high strain rate compressibility and particle breakage in loose sand [J]. Experimental Mechanics, 2018, 58(8): 1331–1334. DOI: 10.1007/s11340-018-0405-4.
    王礼立. 应力波基础[M]. 2版. 北京: 国防工业出版社, 2010: 52−60.
    胡时胜, 唐志平, 王礼立. 应变片技术在动态力学测量中的应用 [J]. 实验力学, 1987(2): 75–84.

    HU S S, TANG Z P, WANG L L. Application of strain gage technique in dynamic measurement [J]. Journal of Experimental Mechanics, 1987(2): 75–84.
    BUSSAC M N, COLLET P, GARY G, et al. An optimization method for separating and rebuilding one-dimensional dispersive waves from multi-point measurements: application to elastic or viscoelastic bars [J]. Journal of the Mechanics and Physics of Solids, 2002, 50(2): 321–349. DOI: 10.1016/S0022-5096(01)00057-6.
    TYAS A, WATSON A J. An investigation of frequency domain dispersion correction of pressure bar signals [J]. International Journal of Impact Engineering, 2001, 25(1): 87–101. DOI: 10.1016/S0734-743X(00)00025-7.
    TYAS A, POPE D J. Full correction of first-mode Pochammer-Chree dispersion effects in experimental pressure bar signals [J]. Measurement Science and Technology, 2005, 16(3): 642. DOI: 10.1088/0957-0233/16/3/004.
    BACON C. An experimental method for considering dispersion and attenuation in a viscoelastic Hopkinson bar [J]. Experimental Mechanics, 1998, 38(4): 242–249. DOI: 10.1007/BF02410385.
    LOVE A E H. A Treatise on the mathematical theory of elasticity [M]. 4th ed. New York: Dover Publications, 1944: 289−291.
    SONG B, CHEN W, LUK V. Impact compressive response of dry sand [J]. Mechanics of Materials, 2009, 41(6): 777–785. DOI: 10.1016/j.mechmat.2009.01.003.
    MARTIN B E, KABIR M E, CHEN W. Undrained high-pressure and high strain-rate response of dry sand under triaxial loading [J]. International Journal of Impact Engineering, 2013, 54: 51–63. DOI: 10.1016/j.ijimpeng.2012.10.008.
    SEMBLAT J, LUONG M P, GARY G. 3D-Hopkinson bar: new experiments for dynamic testing on soils [J]. Soils and Foundations, 1999, 39(1): 1–10. DOI: 10.3208/sandf.39.1.
    KABIR E. Dynamic behavior of granular materials [D]. Indiana: Purdue University, 2010: 13−35.
    FARR J V. Loading rate effects on the one-dimensional compressibility of four partially saturated soils [R]. Army Engineer Waterways Experiment Station Vicksburg MS Structures LAB, 1986: 373.
    谢定义. 非饱和土土力学[M]. 北京: 高等教育出版社, 2015: 10.
    MULILIS J P, ARULANANDAN K, MITCHELL J K, et al. Effects of sample preparation on sand liquefaction [J]. Journal of the Geotechnical Engineering Division, 1977, 103(2): 91–108.
    LADD R S. Specimen preparation and cyclic stability of sands [J]. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 1977, 103: 535–547.
    JUANG C H, HOLTZ R D. Fabric, pore size distribution, and permeability of sandy soils [J]. Journal of Geotechnical Engineering, 1986, 112(9): 855–868. DOI: 10.1061/(ASCE)0733-9410(1986)112:9(855).
    NIMMO J R, AKSTIN K C. Hydraulic conductivity of a sandy soil at low water content after compaction by various methods [J]. Soil Science Society of America Journal, 1988, 52(2): 303–310. DOI: 10.2136/sssaj1988.03615995005200020001x.
    PIERCE J, CHARLIE W A. High-intensity compressive stress wave propagation through unsaturated sands: ESL-TR-90-12 [R]. Tyndall: Air Force Engineering and Services Center, 1990.
    MARTIN B E, CHEN W, SONG B, et al. Moisture effects on the high strain-rate behavior of sand [J]. Mechanics of Materials, 2009, 41(6): 786–798. DOI: 10.1016/j.mechmat.2009.01.014.
    FELICE C W. The response of soil to impulse loads using the split-Hopkinson pressure bar technique [D]. Utah: The University of Utah, 1986: 246−291.
    LUO H Y, COOPER W L, LU H B. Effects of particle size and moisture on the compressive behavior of dense Eglin sand under confinement at high strain rates [J]. International Journal of Impact Engineering, 2014, 65: 40–55. DOI: 10.1016/j.ijimpeng.2013.11.001.
    BLOUIN S E, KWANG J K. Undrained compressibility of saturated soil: DNA-TR-87-42 [R]. USA: ARA, 1984.
    AKERS S A. Two-dimensional finite element analysis of porous geomaterials at multikilobar stress levels [D]. Virginia: Virginia Tech., 2001: 124.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views (5878) PDF downloads(102) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return