Volume 40 Issue 5
May  2020
Turn off MathJax
Article Contents
DUAN Zhongshan, GONG Pengbing, YUAN Wei, GUO Huiping, LUO Yongfeng, LUO Kunsheng. Experimental and simulation of diffusion model and characteristics of explosive cloud at different wind fields[J]. Explosion And Shock Waves, 2020, 40(5): 055901. doi: 10.11883/bzycj-2019-0097
Citation: DUAN Zhongshan, GONG Pengbing, YUAN Wei, GUO Huiping, LUO Yongfeng, LUO Kunsheng. Experimental and simulation of diffusion model and characteristics of explosive cloud at different wind fields[J]. Explosion And Shock Waves, 2020, 40(5): 055901. doi: 10.11883/bzycj-2019-0097

Experimental and simulation of diffusion model and characteristics of explosive cloud at different wind fields

doi: 10.11883/bzycj-2019-0097
  • Received Date: 2019-03-29
  • Rev Recd Date: 2019-08-01
  • Available Online: 2020-04-25
  • Publish Date: 2020-05-01
  • In order to obtain the spatial and temporal distribution law and height variation model of TNT explosion cloud diffusion under different wind Fields, this paper theoretically describes the diffusion process and mechanism of the explosion cloud, and carries out the computational fluid dynamics (CFD) simulation and the field-time distribution experiment of the cloud diffusion under different horizontal wind speeds, and analyzes the diffusion process of the cloud. Morphology, temperature, density and speed change law were established, and the variation model of cloud height with time at different u-wind speeds and the final height calculation model of cloud were established. The results show that the CFD method simulation cloud diffusion results are consistent with the experimental results. The cloud height has a power function with an exponent of 0.5 under windless conditions. The final height and explosive equivalent can be fitted to a power function model with an index of 0.47. The horizontal wind will speed up the mixing of the cloud and the air, causing the exponential parameter of the power function model to decrease linearly with the wind speed becoming larger. The higher the wind speed, the faster the decay rate of the cloud, the shorter the rise time, and the lower the final height.
  • loading
  • [1]
    周宣赤. 基于爆炸现场痕迹反演爆源参数方法及应用[D]. 北京: 北京理工大学, 2014: 3−14.
    [2]
    CHURCH H W. Cloud rise from high explosive detonations: TID-4500 [R]. USA: Sandia National Laboratories (SNL), 1969.
    [3]
    THIELEN H, SCHRODL E. Blast experiments for the derivation of initial cloud dimensions after a “Dirty Bomb” event: Koln- 50667 [R]. Germany, 2004.
    [4]
    SHARON A, HALEVY I, SATTINGER D, et al. Cloud rise model for radiological dispersal devices events [J]. Atmospheric Environment, 2012, 54: 603–610. DOI: 10.1016/j.atmosenv.2012.02.050.
    [5]
    MAKHVILADZE G M, ROBERTS J P, YAKUSH S E. Modelling of atmospheric pollution by explosions [J]. Environmental Software, 1995, 10(2): 117–127. DOI: 10.1016/0266-9838(94)00005-R.
    [6]
    KANSA E J. A time dependant buoyant puff model for explosion sources: UCRL-ID-128733 [R]. USA: Lawrence Livermore National Laboratory, 1997.
    [7]
    KANARSKA Y, LOMOV I, GLENN L, et al. Numerical simulation of cloud rise phenomena associated with nuclear bursts [J]. Annals of Nuclear Energy, 2009, 36(10): 1475–1483. DOI: 10.1016/j.anucene.2009.08.009.
    [8]
    郑毅. 瞬时热源(爆炸烟云)浮力涡环研究[D]. 北京: 清华大学, 2008: 12−40.
    [9]
    李晓丽, 郑毅, 刘伟, 等. 爆炸烟云运动的试验与数值模拟研究初探 [J]. 核电子学与探测技术, 2011, 31(2): 131–135. DOI: 10.3969/j.issn.0258-0934.2011.02.002.

    LI X L, ZHENG Y, LIU W, et al. Numerical modeling and experimental research on the movement of the explosion clouds [J]. Nuclear Electronics and Detection Technology, 2011, 31(2): 131–135. DOI: 10.3969/j.issn.0258-0934.2011.02.002.
    [10]
    ZHANG X, MOUSSA N A, GROSZMANN D E, et al. A simple analytical buoyant puff rise model [C] // Proceedings of JANNAF Safety and Environmental Protection Subcommittee Meeting. Tampa, Florida, 1995.
    [11]
    BROWN R C, KOLB C E, CONANT J A, et al. Source characterization model (SCM) [R]. Washington: United States Department of Energy, 2004.
    [12]
    段中山, 过惠平, 冯孝杰, 等. 爆炸烟云扩散的时空分布模型及特性 [J]. 爆炸与冲击, 2019, 39(5): 054202. DOI: 10.11883/bzycj-2017-0380.

    DUAN Z S, GUO H P, FENG X J, et al. Temporal and spatial distribution models of explosive cloud diffusion and their characteristics [J]. Explosion and Shock Waves, 2019, 39(5): 054202. DOI: 10.11883/bzycj-2017-0380.
    [13]
    LEBEL L, BOURGOUIN P, CHOUHAN S, et al. The sensitivity of atmospheric dispersion calculations in near-field applications: modeling of the FullScale RDD experiments with operational models in Canada, part I [J]. Health Physics, 2016, 110(5): 499–517. DOI: 10.1097/HP.0000000000000365.
    [14]
    KWAK H Y, KANG K M, KO I, et al. Fire-ball expansion and subsequent shock wave propagation from explosives detonation [J]. International Journal of Thermal Sciences, 2012, 59: 9–16. DOI: 10.1016/j.ijthermalsci.2012.04.022.
    [15]
    ABDUL-KARIM N, BLACKMAN C S, GILL P P, et al. The spatial distribution patterns of condensed phase post-blast explosive residues formed during detonation [J]. Journal of Hazardous Materials, 2016, 316: 204–213. DOI: 10.1016/j.jhazmat.2016.04.081.
    [16]
    FEDINA E, FUREBY C. Investigating ground effects on mixing and afterburning during a TNT explosion [J]. Shock Waves, 2013, 23(3): 251–261. DOI: 10.1007/s00193-012-0420-9.
    [17]
    曹毅. 基于Fluent的大气雾霾流场研究[D]. 山东: 青岛科技大学, 2018: 31−43.
    [18]
    MISHRA K B, WEHRSTEDT K D, KREBS H. Boiling liquid expanding vapour explosion (BLEVE) of peroxy-fuels: experiments and computational fluid dynamics (CFD) simulation [J]. Energy Procedia, 2015, 66: 149–152. DOI: 10.1016/j.egypro.2015.02.082.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (4996) PDF downloads(82) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return