Volume 40 Issue 5
May  2020
Turn off MathJax
Article Contents
WANG Tao, WANG Bing, LIN Jianyu, ZHONG Min, BAI Jingsong, LI Ping, TAO Gang. Numerical investigations of the interface instabilities of metallic material under implosion in cylindrical convergent geometry[J]. Explosion And Shock Waves, 2020, 40(5): 052201. doi: 10.11883/bzycj-2019-0150
Citation: WANG Tao, WANG Bing, LIN Jianyu, ZHONG Min, BAI Jingsong, LI Ping, TAO Gang. Numerical investigations of the interface instabilities of metallic material under implosion in cylindrical convergent geometry[J]. Explosion And Shock Waves, 2020, 40(5): 052201. doi: 10.11883/bzycj-2019-0150

Numerical investigations of the interface instabilities of metallic material under implosion in cylindrical convergent geometry

doi: 10.11883/bzycj-2019-0150
  • Received Date: 2019-04-23
  • Rev Recd Date: 2019-07-21
  • Publish Date: 2020-05-01
  • In this paper, the dynamical behavior of metal interface instability driven by implosion in cylindrical convergent geometry is numerically investigated by using an in-house high-fidelity detonation and shock wave program. The results indicate that, in the development process of perturbed interface, the RM instability is primary from the initial shock to 12 μs; after 12 μs and before rebound loading of the convergent shock wave, the interface moves towards the center deceleratedly with an increasing acceleration, and the RT instability dominates the evolution of perturbed interface; after the re-shock, the perturbation growth is dominated by the RM instability again. The effects of initial conditions such as the initial amplitude, wavelength (mode number), thickness of steel shell and geometry configuration on the metal interface instability driven by cylindrical implosion are also investigated. It is shown that, the instantaneous amplitude is larger when the initial amplitude is larger; the instantaneous amplitude is smaller when the initial wavelength is smaller, and a cutoff wavelength exists; the larger thickness of steel shell can suppress the perturbation growth, and a cutoff thickness also exists; the geometrical convergent effect causes the perturbation to grow faster.
  • loading
  • [1]
    RICHTMYER R D. Taylor instability in shock acceleration of compressible fluids [J]. Communications on Pure and Applied Mathematics, 1960, 13(2): 297–319. DOI: 10.1002/cpa.3160130207.
    [2]
    MESHKOV E E. Instability of the interface of two gases accelerated by a shock wave [J]. Fluid Dynamics, 1969, 4: 101–104.
    [3]
    RAYLEIGH L. Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density [J]. Proceedings London Mathematical Society, 1883, 14(1): 170–177.
    [4]
    TAYLOR G I. The instability of liquid surfaces when accelerated in a direction perpendicular to their plane [J]. Proceedings of the Royal Society of London, Series A, 1950, 201: 192–196.
    [5]
    MCCRORY R L, MONTIERTH L, MORSE R L, et al. Nonlinear evolution of ablation-driven Rayleigh-Taylor instability [J]. Physical Review Letters, 1981, 46(5): 336–339. DOI: 10.1103/PhysRevLett.46.336.
    [6]
    LINDL J D, MEAD W C. Two-dimensional simulation of fluid instability in laser-fusion pellets [J]. Physical Review Letters, 1975, 34(20): 1273–1276. DOI: 10.1103/PhysRevLett.34.1273.
    [7]
    KIFONIDIS K, PLEWA T, SCHECK L, et al. Non-spherical core collapse supernovae. Ⅱ. The late-time evolution of globally anisotropic neutrino-driven explosions and their implications for SN 1987A [J]. Astronomy and Astrophysics, 2006, 453: 661–678.
    [8]
    LOW M M M, ZAHNLE K. Explosion of comet shoemaker-levy 9 on entry into the jovian atmosphere [J]. The Astrophysical Journal, 1994, 434: L33–L36. DOI: 10.1086/187565.
    [9]
    SHUVALOV V V, ARTEMIEVA N A. Numerical modeling of tunguska-like impacts [J]. Planetary and Space Science, 2002, 50: 181–192. DOI: 10.1016/S0032-0633(01)00079-4.
    [10]
    KAUS B J P, PODLADCHIKOV Y Y. Forward and reverse modeling of the three-dimensional viscous Rayleigh-Taylor instability [J]. Geophysical Research Letters, 2001, 28(6): 1095–1098. DOI: 10.1029/2000GL011789.
    [11]
    MOLNAR P, HOUSEMAN G A, CONRAD C P. Rayleigh-Taylor instability and convective thinning of mechanically thickened lithosphere: effects of non-linear viscosity decreasing exponentially with depth and of horizontal shortening of the layer [J]. Geophysical Journal International, 1998, 133(3): 568–584. DOI: 10.1046/j.1365-246X.1998.00510.x.
    [12]
    WANG T, BAI J S, LI P, et al. The numerical study of shock-induced hydrodynamic instability and mixing [J]. Chinese Physics B, 2009, 18(3): 1127–1135. DOI: 10.1088/1674-1056/18/3/048.
    [13]
    WANG T, BAI J S, LI P, et al. Large-eddy simulations of the Richtmyer-Meshkov instability of rectangular interface accelerated by shock waves [J]. Science China: Physics, Mechanics and Astronomy, 2010, 53(5): 905–914.
    [14]
    WANG T, LIU J H, BAI J S, et al. Experimental and numerical investigation of inclined air/SF6 interface instability under shock wave [J]. Applied Mathematics and Mechanics, 2012, 33(1): 37–50. DOI: 10.1007/s10483-012-1532-x.
    [15]
    WANG T, TAO G, BAI J S, et al. Numerical comparative analysis of Richtmyer-Meshkov instability simulated by different SGS models [J]. Canadian Journal of Physics, 2015, 93(5): 519–525. DOI: 10.1139/cjp-2014-0099.
    [16]
    WANG T, LI P, BAI J S, et al. Large-eddy simulation of the Richtmyer-Meshkov instability [J]. Canadian Journal of Physics, 2015, 93(10): 1124–1130. DOI: 10.1139/cjp-2014-0652.
    [17]
    WANG T, BAI J S, LI P, et al. Large-eddy simulations of the multi-mode Richtmyer-Meshkov instability and turbulent mixing under reshock [J]. High Energy Density Physics, 2016, 19(1): 65–75.
    [18]
    WANG T, TAO G, BAI J S, et al. Dynamical behavior of the Richtmyer-Meshkov instability-induced turbulent mixing under multiple shock interactions [J]. Canadian Journal of Physics, 2017, 95(8): 671–681. DOI: 10.1139/cjp-2016-0633.
    [19]
    BAI J S, LIU J H, WANG T, et al. Investigation of the Richtmyer-Meshkov instability with double perturbation interface in nonuniform flows [J]. Physical Review E, 2010, 81(2): 056302.
    [20]
    BAI J S, ZOU L Y, WANG T, et al. Experimental and numerical study of the shock-accelerated elliptic heavy gas cylinders [J]. Physical Review E, 2010, 82(5): 056318. DOI: 10.1103/PhysRevE.82.056318.
    [21]
    BAI J S, WANG B, WANG T, et al. Numerical simulation of the Richtmyer-Meshkov instability in initially nonuniform flows and mixing with reshock [J]. Physical Review E, 2012, 86(6): 066319. DOI: 10.1103/PhysRevE.86.066319.
    [22]
    XIAO J X, BAI J S, WANG T. Numerical study of initial perturbation effects on Richtmyer-Meshkov instability in nonuniform flows [J]. Physical Review E, 2016, 94(1): 013112. DOI: 10.1103/PhysRevE.94.013112.
    [23]
    LIU H, XIAO Z L. Scale-to-scale energy transfer in mixing flow induced by the Richtmyer-Meshkov instability [J]. Physical Review E, 2016, 93(5): 053112. DOI: 10.1103/PhysRevE.93.053112.
    [24]
    李俊涛, 孙宇涛, 潘建华, 等. 冲击加载下V形界面的失稳与湍流混合 [J]. 物理学报, 2016, 65(24): 245202. DOI: 10.7498/aps.65.245202.

    LI J T, SUN Y T, PAN J H, et al. Instability and turbulent mixing of shocked V-shaped interface [J]. Acta Physica Sinica, 2016, 65(24): 245202. DOI: 10.7498/aps.65.245202.
    [25]
    李俊涛, 孙宇涛, 胡晓棉, 等. 激波冲击V形界面重气体导致的壁面与旋涡作用及其对湍流混合的影响 [J]. 物理学报, 2017, 66(23): 235201. DOI: 10.7498/aps.66.235201.

    LI J T, SUN Y T, HU X M, et al. Effect of vortex/wall interaction on turbulent mixing in the Richtmyer-Meshkov instability induced by shocked V shape interface [J]. Acta Physica Sinica, 2017, 66(23): 235201. DOI: 10.7498/aps.66.235201.
    [26]
    LUO X S, DING J C, WANG M H, et al. A semi-annular shock tube for studying cylindrically converging Richtmyer-Meshkov instability [J]. Physics of Fluids, 2015, 27(9): 091702. DOI: 10.1063/1.4931929.
    [27]
    LUO X S, ZHANG F, DING J C, et al. Long-term effect of Rayleigh-Taylor stabilization on converging Richtmyer-Meshkov instability [J]. Journal of Fluid Mechanics, 2018, 849: 231–244. DOI: 10.1017/jfm.2018.424.
    [28]
    SI T, LONG T, ZHAI Z G, et al. Experimental investigation of cylindrical converging shock waves interacting with a polygonal heavy gas cylinder [J]. Journal of Fluid Mechanics, 2015, 784: 225–251. DOI: 10.1017/jfm.2015.581.
    [29]
    DING J C, SI T, YANG J M, et al. Measurement of a Richtmyer-Meshkov instability at an air-SF6 interface in a semiannular shock tube [J]. Physical Review Letters, 2017, 119(1): 014501. DOI: 10.1103/PhysRevLett.119.014501.
    [30]
    LEI F, DING J C, SI T, et al. Experimental study on a sinusoidal air/SF6 interface accelerated by a cylindrically converging shock [J]. Journal of Fluid Mechanics, 2017, 826: 819–829. DOI: 10.1017/jfm.2017.506.
    [31]
    MILE J W. Taylor instability of a flat plate, General atomic division of general dynamics: GAMD-7335 [R]. 1966.
    [32]
    WHITE G N. One-degree-of-freedom model for the Taylor instability of an ideally plastic metal plate: LA-5225-MS [R]. Los Alamos, NM: Los Alamos National Laboratory, 1973.
    [33]
    ROBINSON A C, SWEGLE J W. Acceleration instability in elastic-plastic solids. II. Analytical techniques [J]. Journal of Applied Physics, 1989, 66(7): 2859–2872. DOI: 10.1063/1.344191.
    [34]
    PIRIZ A R, CELA J J L, CORTÁZAR O D, et al. Rayleigh-Taylor instability in elastic solids [J]. Physical Review E, 2005, 72(5): 056313. DOI: 10.1103/PhysRevE.72.056313.
    [35]
    PIRIZ A R, CELA J J L, TAHIR N A. Rayleigh-Taylor instability in elastic-plastic solids [J]. Journal of Applied Physics, 2009, 105(11): 116101. DOI: 10.1063/1.3139267.
    [36]
    PIRIZ A R, CELA J J L, TAHIR N A. Linear analysis of incompressible Rayleigh-Taylor instability in solids [J]. Physical Review E, 2009, 80(4): 046305. DOI: 10.1103/PhysRevE.80.046305.
    [37]
    BAI X B, WANG T, ZHU Y X, et al. Expansion of linear analysis of Rayleigh-Taylor interface instability of metal materials [J]. World Journal of Mechanics, 2018, 8: 94–106. DOI: 10.4236/wjm.2018.84008.
    [38]
    BARNES J F, BLEWETT P J, MCQUEEN R G, et al. Taylor instability in solids [J]. Journal of Applied Physics, 1974, 45(2): 727–732. DOI: 10.1063/1.1663310.
    [39]
    BARNES J F, JANNEY D H, LONDON R K, et al. Further experimentation on Taylor instability in solids [J]. Journal of Applied Physics, 1980, 51: 4678–4679. DOI: 10.1063/1.328339.
    [40]
    LINDQUIST M J, CAVALLO R M, LORENZ K T, et al. Aluminum Rayleigh Taylor strength measurements and calculations [C] // LEGRAND M, VANDENBOOMGAERDE M. 10th International Workshop on Physics of Compressible Turbulent Mixing. Paris, France, 2006.
    [41]
    DE FRAHAN M T H, BELOF J L, CAVALLO R M, et al. Experimental and numerical investigations of beryllium strength models using the Rayleigh-Taylor instability [J]. Journal of Applied Physics, 2015, 117(22): 225901. DOI: 10.1063/1.4922336.
    [42]
    王涛, 柏劲松, 曹仁义, 等. 爆轰驱动铝飞层扰动增长的数值模拟 [J]. 高压物理学报, 2018, 32(3): 032301. DOI: 10.11858/gywlxb.20170624.

    WANG T, BAI J S, CAO R Y, et al. Numerical investigations of perturbation growth in aluminum flyer driven by explosion [J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 032301. DOI: 10.11858/gywlxb.20170624.
    [43]
    何长江, 周海兵, 杭义洪. 爆轰驱动金属铝界面不稳定性的数值分析 [J]. 中国科学: 物理学, 力学, 天文学, 2009, 39(9): 1170–1173.

    HE C J, ZHOU H B, HANG Y H. Numerical analysis of aluminum interface instability under explosion [J]. Science China: Physics, Mechanics and Astronomy, 2009, 39(9): 1170–1173.
    [44]
    郝鹏程, 冯其京, 胡晓棉. 内爆加载金属界面不稳定性的数值分析 [J]. 爆炸与冲击, 2016, 36(6): 739–744. DOI: 10.11883/1001-1455(2016)06-0739-06.

    HAO P C, FENG Q J, HU X M. A numerical study of the instability of the metal shell in the implosion [J]. Explosion and Shock Waves, 2016, 36(6): 739–744. DOI: 10.11883/1001-1455(2016)06-0739-06.
    [45]
    刘军, 冯其京, 周海兵. 柱面内爆驱动金属界面不稳定性的数值模拟研究 [J]. 物理学报, 2014, 63(15): 155201. DOI: 10.7498/aps.63.155201.

    LIU J, FENG Q J, ZHOU H B. Simulation study of interface instability in metals driven by cylindrical implosion [J]. Acta Physica Sinica, 2014, 63(15): 155201. DOI: 10.7498/aps.63.155201.
    [46]
    OLSON R T, CERRETA E K, MORRIS C, et al. The effect of microstructure on Rayleigh-Taylor instability growth in solids [J]. Journal of Physics: Conference Series, 2014, 500: 112048. DOI: 10.1088/1742-6596/500/11/112048.
    [47]
    JENSEN B J, CHERNE F J, PRIME M B, et al. Jet formation in cerium metal to examine material strength [J]. Journal of Applied Physics, 2015, 118(19): 195903. DOI: 10.1063/1.4935879.
    [48]
    CHERNE F J, HAMMERBERG J E, ANDREWS M J, et al. On shock driven jetting of liquid from non-sinusoidal surfaces into a vacuum [J]. Journal of Applied Physics, 2015, 118(18): 185901. DOI: 10.1063/1.4934645.
    [49]
    PARK H S, LORENZ K T, CACALLO R M, et al. Viscous Rayleigh-Taylor instability experiments at high pressure and strain rate [J]. Physical Review Letters, 2010, 104(13): 135504. DOI: 10.1103/PhysRevLett.104.135504.
    [50]
    PIRIZ A R, LÓPEZ CELA J J, TAHIR N A. Richtmyer-Meshkov instability as a tool for evaluating material strength under extreme conditions [J]. Nuclear Instruments and Methods in Physics Research A, 2009, 606: 139–141. DOI: 10.1016/j.nima.2009.03.094.
    [51]
    DIMONTE G, TERRONES G, CHERNE F J, et al. Use of the Richtmyer-Meshkov instability to infer yield stress at high-energy densities [J]. Physical Review Letters, 2011, 107(26): 264502. DOI: 10.1103/PhysRevLett.107.264502.
    [52]
    LORENZ K T, EDWARDS M J, GLENDINNING S G, et al. Accessing ultrahigh-pressure, quasi-isentropic states of matter [J]. Physics of Plasmas, 2005, 12(5): 056309. DOI: 10.1063/1.1873812.
    [53]
    PRIME M B, BUTTLER W T, BUECHLER M A, et al. Estimation of metal strength at very high rates using free-surface Richtmyer-Meshkov instabilities [J]. Journal of Dynamic Behavior of Materials, 2017, 3: 1–14. DOI: 10.1007/s40870-016-0088-9.
    [54]
    LEBEDEV A I, APRELKOV O N, ARINI V A, et al. Perturbation method for study of shear strength of materials at pressures up to ~300 GPa [C] // AIP Conference Proceedings (Shock Compression of Condensed Matter), 2006: 745−748.
    [55]
    FRACHET V, GELEZNIKOFF F, GUIX R, et al. Rayleigh Taylor instability in cylindrical configuration [C] // Proceedings of 2nd International Workshop on the Physics of Compressible Turbulent Mixing. 1989: 862−849.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)

    Article Metrics

    Article views (5689) PDF downloads(94) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return