Citation: | CHEN Jianyun, CAO Xiangyu, XU Qiang, LI Jing. Dynamic responses of AP1000 reinforced concrete shield building subjected to contact explosion[J]. Explosion And Shock Waves, 2020, 40(4): 044201. doi: 10.11883/bzycj-2019-0151 |
[1] |
林诚格. 非能动安全先进核电厂AP1000 [M]. 北京: 原子能出版社, 2008: 16−17.
|
[2] |
ROGERS G L, DIMAGGIO F L. Dynamics of framed structures [M]. New York: John Wiley and Sons Incs, 1959: 100-120. DOI: 10.1115/1.3643926.
|
[3] |
BAKER W E. Explosions in air [M]. Texas: University of Texas Press, 1973.
|
[4] |
KARPP R R, DUFFEY T A, NEAL T R. Response of containment vessels to explosive blast loading [J]. Journal of Pressure Vessel Technology, 1983, 105(1): 23–27. DOI: 10.1115/1.3264234.
|
[5] |
HASHEMI S K, BRADFORD M A, VALIPOUR H R. Dynamic response of cable-stayed bridge under blast load [J]. Engineering Structures, 2016, 127: 719–736. DOI: 10.1016/j.engstruct.2016.08.038.
|
[6] |
TANG E K C, HAO H. Numerical simulation of a cable-stayed bridge response to blast loads. Part I: model development and response calculations [J]. Engineering Structures, 2010, 32(10): 3180–3192. DOI: 10.1016/j.engstruct.2010.06.007.
|
[7] |
KELLIHER D, SUTTON-SWABY K. Stochastic representation of blast load damage in a reinforced concrete building [J]. Structural Safety, 2012, 34(1): 407–417. DOI: 10.1016/j.strusafe.2011.08.001.
|
[8] |
FENG F. Dynamic response and robustness of tall buildings under blast loading [J]. Journal of Constructional Steel Research, 2013, 80: 299–307. DOI: 10.1016/j.jcsr.2012.10.001.
|
[9] |
CHEN J Y, LIU X P, XU Q. Numerical simulation analysis of damage mode of concrete gravity dam under close-in explosion [J]. KSCE Journal of Civil Engineering, 2017, 21(1): 397–407. DOI: 10.1007/s12205-016-1082-4.
|
[10] |
ZHANG S R, WANG G H, WANG C, et al. Numerical simulation of failure modes of concrete gravity dams subjected to underwater explosion [J]. Engineering Failure Analysis, 2014, 36: 49–64. DOI: 10.1016/j.engfailanal.2013.10.001.
|
[11] |
王天运, 任辉启, 刘立胜. 常规装药爆炸荷载作用下核电站安全壳的动力响应分析 [J]. 工程建设与设计, 2005(4): 20–23. DOI: 10.3969/j.issn.1007-9467.2005.04.007.
WANG T Y, REN H Q, LIU L S. Nuclear power station concrete containment dynamical response analysis under blast load of general bomb [J]. Construction and Design for Project, 2005(4): 20–23. DOI: 10.3969/j.issn.1007-9467.2005.04.007.
|
[12] |
PANDEY A K, KUMAR R, PAUL D K, et al. Non-linear response of reinforced concrete containment structure under blast loading [J]. Nuclear Engineering and Design, 2006, 236(9): 993–1002. DOI: 10.1016/j.nucengdes.2005.09.015.
|
[13] |
BAO X L, LI B. Residual strength of blast damaged reinforced concrete columns [J]. International Journal of Impact Engineering, 2010, 37(3): 295–308. DOI: 10.1016/j.ijimpeng.2009.04.003.
|
[14] |
CAO X Y, XU Q, CHEN J Y, et al. Damage prediction for an AP1000 nuclear island subjected to a contact explosion [J]. Structural Engineering International, 2018, 28(4): 526–534. DOI: 10.1080/10168664.2018.1462673.
|
[15] |
赵春风, 陈健云. 内爆荷载作用下钢筋混凝土安全壳的非线性响应分析 [J]. 爆炸与冲击, 2013, 33(6): 667–672. DOI: 10.11883/1001-1455(2013)06-0667-06.
ZHAO C F, CHEN J Y. Dynamic responses of reinforced concrete containment subjected to internal blast loading [J]. Explosion and Shock Waves, 2013, 33(6): 667–672. DOI: 10.11883/1001-1455(2013)06-0667-06.
|
[16] |
MALVAR L J, ROSS C A. Review of strain rate effects for concrete in tension [J]. ACI Materials Journal, 1998, 95: 735–739.
|
[17] |
BATRA R C, KIM C H. Analysis of shear banding in twelve materials [J]. International Journal of Plasticity, 1992, 8(4): 425–452. DOI: 10.1016/0749-6419(92)90058-K.
|
[18] |
KALTHOFF J F, WINKLER S. Failure mode transition at high rates of shear loading [C] // DGM Informations Gesellschaft mbH. Impact loading and dynamic behavior of materials. 1988: 185−195.
|
[19] |
KALTHOFF J F, BÜRGEL A. Influence of loading rate on shear fracture toughness for failure mode transition [J]. International Journal of Impact Engineering, 2004, 30(8-9): 957–971. DOI: 10.1016/j.ijimpeng.2004.05.004.
|
[20] |
NEEDLEMAN A, TVERGAARD V. Analysis of a brittle-ductile transition under dynamic shear loading [J]. International Journal of Solids and Structures, 1995, 32(17): 2571–2590. DOI: 10.1016/0020-7683(94)00283-3.
|
[21] |
RAVI-CHANDAR K. On the failure mode transitions in polycarbonate under dynamic mixed-mode loading [J]. International Journal of Solids and Structures, 1995, 32(6): 925–938. DOI: 10.1016/0020-7683(94)00169-w.
|
[22] |
Center Dynamics Inc. Autodyn theory manual [M]. Concord, CA: Century Dynamics Inc, 2006.
|
[23] |
RIEDEL W, THOMA K, HIERMAIER S, et al. Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes [C] // Proceedings of the 9th International Symposium on the Effects of Munitions with Structures. Berlin-Strausberg, Germany, 1999: 315.
|
[24] |
HULATT J, HOLLAWAY L, THORNE A. Preliminary investigations on the environmental effects on new heavyweight fabrics for use in civil engineering [J]. Composites Part B: Engineering, 2002, 33(6): 407–414. DOI: 10.1016/S1359-8368(02)00034-3.
|
[25] |
JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strain rates and high temperatures [C] // The 7th International Symposium on Ballistics. Hague, Netherlands, 1983: 541−547.
|
[26] |
VAN DER VEEN W A. Simulation of a compartmented airbag deployment using an explicit, coupled Euler/Lagrange method with adaptive Euler domains [R]. Florida: NAFEMS, 2003.
|
[27] |
BENSON D J. Computational methods in Lagrangian and Eulerian hydrocodes [J]. Computer methods in Applied Mechanics and Engineering, 1992, 99(2): 235–394. DOI: 10.1016/0045-7825(92)90042-I.
|
[28] |
LI J, WU C Q, HAO H, et al. Experimental investigation of ultra-high performance concrete slabs under contact explosions [J]. International Journal of Impact Engineering, 2016, 93: 62–75. DOI: 10.1016/j.ijimpeng.2016.02.007.
|
[29] |
LI J, WU C Q, HAO H. Investigation of ultra-high performance concrete slab and normal strength concrete slab under contact explosion [J]. Engineering Structures, 2015, 102: 395–408. DOI: 10.1016/j.engstruct.2015.08.032.
|
[30] |
LI J, WU C Q, HAO H, et al. Experimental and numerical study on steel wire mesh reinforced concrete slab under contact explosion [J]. Materials and Design, 2017, 116: 77–91. DOI: 10.1016/j.matdes.2016.11.098.
|
[31] |
WANG W, ZHANG D, LU F Y, et al. Experimental study and numerical simulation of the damage mode of a square reinforced concrete slab under close-in explosion [J]. Engineering Failure Analysis, 2013, 27: 41–51. DOI: 10.1016/j.engfailanal.2012.07.010.
|
[32] |
李本平. 制导炸弹连续打击下混凝土重力坝的破坏效应 [J]. 爆炸与冲击, 2010, 30(2): 220–224. DOI: 10.11883/1001-1455(2010)02-0220-05.
LI B P. Damage effect of a concrete gravity dam under continuous attacks of guided bombs [J]. Explosion and Shock Waves, 2010, 30(2): 220–224. DOI: 10.11883/1001-1455(2010)02-0220-05.
|